1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-24 13:56:33 +02:00

optionally (use_lpc=2) support Cholesky factorization for finding the lpc coeficients

this will find the coefficients which minimize the sum of the squared errors,
  levinson-durbin recursion OTOH is only strictly correct if the autocorrelation matrix is a
  toeplitz matrix which it is only if the blocksize is infinite, this is also why applying
  a window (like the welch winodw we currently use) improves the lpc coefficients generated
  by levinson-durbin recursion ...

optionally (use_lpc>2) support iterative linear least abs() solver using cholesky
  factorization with adjusted weights in each iteration

compression gain for both is small, and multiple passes are of course dead slow

Originally committed as revision 5747 to svn://svn.ffmpeg.org/ffmpeg/trunk
This commit is contained in:
Michael Niedermayer 2006-07-14 18:48:38 +00:00
parent 643326f747
commit ab01b2b82a

View File

@ -21,6 +21,7 @@
#include "bitstream.h"
#include "crc.h"
#include "golomb.h"
#include "lls.h"
#define FLAC_MAX_CH 8
#define FLAC_MIN_BLOCKSIZE 16
@ -236,10 +237,12 @@ static int flac_encode_init(AVCodecContext *avctx)
/* set compression option overrides from AVCodecContext */
if(avctx->use_lpc >= 0) {
s->options.use_lpc = !!avctx->use_lpc;
s->options.use_lpc = clip(avctx->use_lpc, 0, 11);
}
av_log(avctx, AV_LOG_DEBUG, " use lpc: %s\n",
s->options.use_lpc? "yes" : "no");
if(s->options.use_lpc == 1)
av_log(avctx, AV_LOG_DEBUG, " use lpc: Levinson-Durbin recursion with Welch window\n");
else if(s->options.use_lpc > 1)
av_log(avctx, AV_LOG_DEBUG, " use lpc: Cholesky factorization\n");
if(avctx->min_prediction_order >= 0) {
if(s->options.use_lpc) {
@ -725,21 +728,49 @@ static int estimate_best_order(double *ref, int max_order)
*/
static int lpc_calc_coefs(const int32_t *samples, int blocksize, int max_order,
int precision, int32_t coefs[][MAX_LPC_ORDER],
int *shift)
int *shift, int use_lpc)
{
double autoc[MAX_LPC_ORDER+1];
double ref[MAX_LPC_ORDER];
double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
int i;
int i, j, pass;
int opt_order;
assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER);
compute_autocorr(samples, blocksize, max_order+1, autoc);
if(use_lpc == 1){
compute_autocorr(samples, blocksize, max_order+1, autoc);
compute_lpc_coefs(autoc, max_order, lpc, ref);
compute_lpc_coefs(autoc, max_order, lpc, ref);
opt_order = estimate_best_order(ref, max_order);
opt_order = estimate_best_order(ref, max_order);
}else{
LLSModel m[2];
double var[MAX_LPC_ORDER+1], eval;
for(pass=0; pass<use_lpc-1; pass++){
av_init_lls(&m[pass&1], max_order/*3*/);
for(i=max_order; i<blocksize; i++){
for(j=0; j<=max_order; j++)
var[j]= samples[i-j];
if(pass){
eval= av_evaluate_lls(&m[(pass-1)&1], var+1);
eval= (512>>pass) + fabs(eval - var[0]);
for(j=0; j<=max_order; j++)
var[j]= samples[i-j] / sqrt(eval);
}
av_update_lls(&m[pass&1], var, 1.0);
}
av_solve_lls(&m[pass&1], 0.001);
opt_order= max_order; //FIXME
}
for(i=0; i<opt_order; i++)
lpc[opt_order-1][i]= m[(pass-1)&1].coeff[i];
}
i = opt_order-1;
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
@ -865,7 +896,7 @@ static int encode_residual(FlacEncodeContext *ctx, int ch)
}
/* LPC */
sub->order = lpc_calc_coefs(smp, n, max_order, precision, coefs, shift);
sub->order = lpc_calc_coefs(smp, n, max_order, precision, coefs, shift, ctx->options.use_lpc);
sub->type = FLAC_SUBFRAME_LPC;
sub->type_code = sub->type | (sub->order-1);
sub->shift = shift[sub->order-1];