mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-11-21 10:55:51 +02:00
dnn/vf_dnn_detect.c: add tensorflow output parse support
Testing model is tensorflow offical model in github repo, please refer https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md to download the detect model as you need. For example, local testing was carried on with 'ssd_mobilenet_v2_coco_2018_03_29.tar.gz', and used one image of dog in https://github.com/tensorflow/models/blob/master/research/object_detection/test_images/image1.jpg Testing command is: ./ffmpeg -i image1.jpg -vf dnn_detect=dnn_backend=tensorflow:input=image_tensor:output=\ "num_detections&detection_scores&detection_classes&detection_boxes":model=ssd_mobilenet_v2_coco.pb,\ showinfo -f null - We will see the result similar as below: [Parsed_showinfo_1 @ 0x33e65f0] side data - detection bounding boxes: [Parsed_showinfo_1 @ 0x33e65f0] source: ssd_mobilenet_v2_coco.pb [Parsed_showinfo_1 @ 0x33e65f0] index: 0, region: (382, 60) -> (1005, 593), label: 18, confidence: 9834/10000. [Parsed_showinfo_1 @ 0x33e65f0] index: 1, region: (12, 8) -> (328, 549), label: 18, confidence: 8555/10000. [Parsed_showinfo_1 @ 0x33e65f0] index: 2, region: (293, 7) -> (682, 458), label: 1, confidence: 8033/10000. [Parsed_showinfo_1 @ 0x33e65f0] index: 3, region: (342, 0) -> (690, 325), label: 1, confidence: 5878/10000. There are two boxes of dog with cores 94.05% & 93.45% and two boxes of person with scores 80.33% & 58.78%. Signed-off-by: Ting Fu <ting.fu@intel.com> Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
This commit is contained in:
parent
e42125edab
commit
c38bc5634d
@ -48,6 +48,9 @@ typedef struct DnnDetectContext {
|
||||
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
|
||||
static const AVOption dnn_detect_options[] = {
|
||||
{ "dnn_backend", "DNN backend", OFFSET(backend_type), AV_OPT_TYPE_INT, { .i64 = 2 }, INT_MIN, INT_MAX, FLAGS, "backend" },
|
||||
#if (CONFIG_LIBTENSORFLOW == 1)
|
||||
{ "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" },
|
||||
#endif
|
||||
#if (CONFIG_LIBOPENVINO == 1)
|
||||
{ "openvino", "openvino backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 2 }, 0, 0, FLAGS, "backend" },
|
||||
#endif
|
||||
@ -59,7 +62,7 @@ static const AVOption dnn_detect_options[] = {
|
||||
|
||||
AVFILTER_DEFINE_CLASS(dnn_detect);
|
||||
|
||||
static int dnn_detect_post_proc(AVFrame *frame, DNNData *output, uint32_t nb, AVFilterContext *filter_ctx)
|
||||
static int dnn_detect_post_proc_ov(AVFrame *frame, DNNData *output, AVFilterContext *filter_ctx)
|
||||
{
|
||||
DnnDetectContext *ctx = filter_ctx->priv;
|
||||
float conf_threshold = ctx->confidence;
|
||||
@ -136,6 +139,96 @@ static int dnn_detect_post_proc(AVFrame *frame, DNNData *output, uint32_t nb, AV
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int dnn_detect_post_proc_tf(AVFrame *frame, DNNData *output, AVFilterContext *filter_ctx)
|
||||
{
|
||||
DnnDetectContext *ctx = filter_ctx->priv;
|
||||
int proposal_count;
|
||||
float conf_threshold = ctx->confidence;
|
||||
float *conf, *position, *label_id, x0, y0, x1, y1;
|
||||
int nb_bboxes = 0;
|
||||
AVFrameSideData *sd;
|
||||
AVDetectionBBox *bbox;
|
||||
AVDetectionBBoxHeader *header;
|
||||
|
||||
proposal_count = *(float *)(output[0].data);
|
||||
conf = output[1].data;
|
||||
position = output[3].data;
|
||||
label_id = output[2].data;
|
||||
|
||||
sd = av_frame_get_side_data(frame, AV_FRAME_DATA_DETECTION_BBOXES);
|
||||
if (sd) {
|
||||
av_log(filter_ctx, AV_LOG_ERROR, "already have dnn bounding boxes in side data.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
for (int i = 0; i < proposal_count; ++i) {
|
||||
if (conf[i] < conf_threshold)
|
||||
continue;
|
||||
nb_bboxes++;
|
||||
}
|
||||
|
||||
if (nb_bboxes == 0) {
|
||||
av_log(filter_ctx, AV_LOG_VERBOSE, "nothing detected in this frame.\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
header = av_detection_bbox_create_side_data(frame, nb_bboxes);
|
||||
if (!header) {
|
||||
av_log(filter_ctx, AV_LOG_ERROR, "failed to create side data with %d bounding boxes\n", nb_bboxes);
|
||||
return -1;
|
||||
}
|
||||
|
||||
av_strlcpy(header->source, ctx->dnnctx.model_filename, sizeof(header->source));
|
||||
|
||||
for (int i = 0; i < proposal_count; ++i) {
|
||||
y0 = position[i * 4];
|
||||
x0 = position[i * 4 + 1];
|
||||
y1 = position[i * 4 + 2];
|
||||
x1 = position[i * 4 + 3];
|
||||
|
||||
bbox = av_get_detection_bbox(header, i);
|
||||
|
||||
if (conf[i] < conf_threshold) {
|
||||
continue;
|
||||
}
|
||||
|
||||
bbox->x = (int)(x0 * frame->width);
|
||||
bbox->w = (int)(x1 * frame->width) - bbox->x;
|
||||
bbox->y = (int)(y0 * frame->height);
|
||||
bbox->h = (int)(y1 * frame->height) - bbox->y;
|
||||
|
||||
bbox->detect_confidence = av_make_q((int)(conf[i] * 10000), 10000);
|
||||
bbox->classify_count = 0;
|
||||
|
||||
if (ctx->labels && label_id[i] < ctx->label_count) {
|
||||
av_strlcpy(bbox->detect_label, ctx->labels[(int)label_id[i]], sizeof(bbox->detect_label));
|
||||
} else {
|
||||
snprintf(bbox->detect_label, sizeof(bbox->detect_label), "%d", (int)label_id[i]);
|
||||
}
|
||||
|
||||
nb_bboxes--;
|
||||
if (nb_bboxes == 0) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int dnn_detect_post_proc(AVFrame *frame, DNNData *output, uint32_t nb, AVFilterContext *filter_ctx)
|
||||
{
|
||||
DnnDetectContext *ctx = filter_ctx->priv;
|
||||
DnnContext *dnn_ctx = &ctx->dnnctx;
|
||||
switch (dnn_ctx->backend_type) {
|
||||
case DNN_OV:
|
||||
return dnn_detect_post_proc_ov(frame, output, filter_ctx);
|
||||
case DNN_TF:
|
||||
return dnn_detect_post_proc_tf(frame, output, filter_ctx);
|
||||
default:
|
||||
avpriv_report_missing_feature(filter_ctx, "Current dnn backend does not support detect filter\n");
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
}
|
||||
|
||||
static void free_detect_labels(DnnDetectContext *ctx)
|
||||
{
|
||||
for (int i = 0; i < ctx->label_count; i++) {
|
||||
|
Loading…
Reference in New Issue
Block a user