mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-13 21:28:01 +02:00
libavfilter/dnn: add more data type support for dnn model input
currently, only float is supported as model input, actually, there are other data types, this patch adds uint8. Signed-off-by: Guo, Yejun <yejun.guo@intel.com> Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
This commit is contained in:
parent
25c1cd909f
commit
c636dc9819
@ -24,8 +24,9 @@
|
||||
*/
|
||||
|
||||
#include "dnn_backend_native.h"
|
||||
#include "libavutil/avassert.h"
|
||||
|
||||
static DNNReturnType set_input_output_native(void *model, DNNData *input, const char *input_name, const char **output_names, uint32_t nb_output)
|
||||
static DNNReturnType set_input_output_native(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output)
|
||||
{
|
||||
ConvolutionalNetwork *network = (ConvolutionalNetwork *)model;
|
||||
InputParams *input_params;
|
||||
@ -45,6 +46,7 @@ static DNNReturnType set_input_output_native(void *model, DNNData *input, const
|
||||
if (input->data){
|
||||
av_freep(&input->data);
|
||||
}
|
||||
av_assert0(input->dt == DNN_FLOAT);
|
||||
network->layers[0].output = input->data = av_malloc(cur_height * cur_width * cur_channels * sizeof(float));
|
||||
if (!network->layers[0].output){
|
||||
return DNN_ERROR;
|
||||
|
@ -79,10 +79,31 @@ static TF_Buffer *read_graph(const char *model_filename)
|
||||
return graph_buf;
|
||||
}
|
||||
|
||||
static DNNReturnType set_input_output_tf(void *model, DNNData *input, const char *input_name, const char **output_names, uint32_t nb_output)
|
||||
static TF_Tensor *allocate_input_tensor(const DNNInputData *input)
|
||||
{
|
||||
TF_DataType dt;
|
||||
size_t size;
|
||||
int64_t input_dims[] = {1, input->height, input->width, input->channels};
|
||||
switch (input->dt) {
|
||||
case DNN_FLOAT:
|
||||
dt = TF_FLOAT;
|
||||
size = sizeof(float);
|
||||
break;
|
||||
case DNN_UINT8:
|
||||
dt = TF_UINT8;
|
||||
size = sizeof(char);
|
||||
break;
|
||||
default:
|
||||
av_assert0(!"should not reach here");
|
||||
}
|
||||
|
||||
return TF_AllocateTensor(dt, input_dims, 4,
|
||||
input_dims[1] * input_dims[2] * input_dims[3] * size);
|
||||
}
|
||||
|
||||
static DNNReturnType set_input_output_tf(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output)
|
||||
{
|
||||
TFModel *tf_model = (TFModel *)model;
|
||||
int64_t input_dims[] = {1, input->height, input->width, input->channels};
|
||||
TF_SessionOptions *sess_opts;
|
||||
const TF_Operation *init_op = TF_GraphOperationByName(tf_model->graph, "init");
|
||||
|
||||
@ -95,8 +116,7 @@ static DNNReturnType set_input_output_tf(void *model, DNNData *input, const char
|
||||
if (tf_model->input_tensor){
|
||||
TF_DeleteTensor(tf_model->input_tensor);
|
||||
}
|
||||
tf_model->input_tensor = TF_AllocateTensor(TF_FLOAT, input_dims, 4,
|
||||
input_dims[1] * input_dims[2] * input_dims[3] * sizeof(float));
|
||||
tf_model->input_tensor = allocate_input_tensor(input);
|
||||
if (!tf_model->input_tensor){
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
@ -32,6 +32,14 @@ typedef enum {DNN_SUCCESS, DNN_ERROR} DNNReturnType;
|
||||
|
||||
typedef enum {DNN_NATIVE, DNN_TF} DNNBackendType;
|
||||
|
||||
typedef enum {DNN_FLOAT, DNN_UINT8} DNNDataType;
|
||||
|
||||
typedef struct DNNInputData{
|
||||
void *data;
|
||||
DNNDataType dt;
|
||||
int width, height, channels;
|
||||
} DNNInputData;
|
||||
|
||||
typedef struct DNNData{
|
||||
float *data;
|
||||
int width, height, channels;
|
||||
@ -42,7 +50,7 @@ typedef struct DNNModel{
|
||||
void *model;
|
||||
// Sets model input and output.
|
||||
// Should be called at least once before model execution.
|
||||
DNNReturnType (*set_input_output)(void *model, DNNData *input, const char *input_name, const char **output_names, uint32_t nb_output);
|
||||
DNNReturnType (*set_input_output)(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output);
|
||||
} DNNModel;
|
||||
|
||||
// Stores pointers to functions for loading, executing, freeing DNN models for one of the backends.
|
||||
|
@ -40,7 +40,8 @@ typedef struct SRContext {
|
||||
DNNBackendType backend_type;
|
||||
DNNModule *dnn_module;
|
||||
DNNModel *model;
|
||||
DNNData input, output;
|
||||
DNNInputData input;
|
||||
DNNData output;
|
||||
int scale_factor;
|
||||
struct SwsContext *sws_contexts[3];
|
||||
int sws_slice_h, sws_input_linesize, sws_output_linesize;
|
||||
@ -86,6 +87,7 @@ static av_cold int init(AVFilterContext *context)
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
|
||||
sr_context->input.dt = DNN_FLOAT;
|
||||
sr_context->sws_contexts[0] = NULL;
|
||||
sr_context->sws_contexts[1] = NULL;
|
||||
sr_context->sws_contexts[2] = NULL;
|
||||
|
Loading…
Reference in New Issue
Block a user