1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-24 13:56:33 +02:00

avfilter/dnn: get the data type of network output from dnn execution result

so,  we can make a filter more general to accept different network
models, by adding a data type convertion after getting data from network.

After we add dt field into struct DNNData, it becomes the same as
DNNInputData, so merge them with one struct: DNNData.

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
This commit is contained in:
Guo, Yejun 2019-10-21 20:38:10 +08:00 committed by Pedro Arthur
parent dff39ea9f0
commit e1b45b8596
8 changed files with 13 additions and 13 deletions

View File

@ -28,7 +28,7 @@
#include "dnn_backend_native_layer_conv2d.h"
#include "dnn_backend_native_layers.h"
static DNNReturnType set_input_output_native(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output)
static DNNReturnType set_input_output_native(void *model, DNNData *input, const char *input_name, const char **output_names, uint32_t nb_output)
{
ConvolutionalNetwork *network = (ConvolutionalNetwork *)model;
DnnOperand *oprd = NULL;
@ -263,6 +263,7 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
outputs[i].height = oprd->dims[1];
outputs[i].width = oprd->dims[2];
outputs[i].channels = oprd->dims[3];
outputs[i].dt = oprd->data_type;
}
return DNN_SUCCESS;

View File

@ -106,6 +106,7 @@ int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_
output_operand->dims[1] = height - pad_size * 2;
output_operand->dims[2] = width - pad_size * 2;
output_operand->dims[3] = conv_params->output_num;
output_operand->data_type = operands[input_operand_index].data_type;
output_operand->length = calculate_operand_data_length(output_operand);
output_operand->data = av_realloc(output_operand->data, output_operand->length);
if (!output_operand->data)

View File

@ -69,6 +69,7 @@ int dnn_execute_layer_depth2space(DnnOperand *operands, const int32_t *input_ope
output_operand->dims[1] = height * block_size;
output_operand->dims[2] = width * block_size;
output_operand->dims[3] = new_channels;
output_operand->data_type = operands[input_operand_index].data_type;
output_operand->length = calculate_operand_data_length(output_operand);
output_operand->data = av_realloc(output_operand->data, output_operand->length);
if (!output_operand->data)

View File

@ -105,6 +105,7 @@ int dnn_execute_layer_pad(DnnOperand *operands, const int32_t *input_operand_ind
output_operand->dims[1] = new_height;
output_operand->dims[2] = new_width;
output_operand->dims[3] = new_channel;
output_operand->data_type = operands[input_operand_index].data_type;
output_operand->length = calculate_operand_data_length(output_operand);
output_operand->data = av_realloc(output_operand->data, output_operand->length);
if (!output_operand->data)

View File

@ -83,7 +83,7 @@ static TF_Buffer *read_graph(const char *model_filename)
return graph_buf;
}
static TF_Tensor *allocate_input_tensor(const DNNInputData *input)
static TF_Tensor *allocate_input_tensor(const DNNData *input)
{
TF_DataType dt;
size_t size;
@ -105,7 +105,7 @@ static TF_Tensor *allocate_input_tensor(const DNNInputData *input)
input_dims[1] * input_dims[2] * input_dims[3] * size);
}
static DNNReturnType set_input_output_tf(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output)
static DNNReturnType set_input_output_tf(void *model, DNNData *input, const char *input_name, const char **output_names, uint32_t nb_output)
{
TFModel *tf_model = (TFModel *)model;
TF_SessionOptions *sess_opts;
@ -603,6 +603,7 @@ DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData *outputs, u
outputs[i].width = TF_Dim(tf_model->output_tensors[i], 2);
outputs[i].channels = TF_Dim(tf_model->output_tensors[i], 3);
outputs[i].data = TF_TensorData(tf_model->output_tensors[i]);
outputs[i].dt = TF_TensorType(tf_model->output_tensors[i]);
}
return DNN_SUCCESS;

View File

@ -34,15 +34,10 @@ typedef enum {DNN_NATIVE, DNN_TF} DNNBackendType;
typedef enum {DNN_FLOAT = 1, DNN_UINT8 = 4} DNNDataType;
typedef struct DNNInputData{
typedef struct DNNData{
void *data;
DNNDataType dt;
int width, height, channels;
} DNNInputData;
typedef struct DNNData{
float *data;
int width, height, channels;
} DNNData;
typedef struct DNNModel{
@ -50,7 +45,7 @@ typedef struct DNNModel{
void *model;
// Sets model input and output.
// Should be called at least once before model execution.
DNNReturnType (*set_input_output)(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output);
DNNReturnType (*set_input_output)(void *model, DNNData *input, const char *input_name, const char **output_names, uint32_t nb_output);
} DNNModel;
// Stores pointers to functions for loading, executing, freeing DNN models for one of the backends.

View File

@ -39,7 +39,7 @@ typedef struct DRContext {
DNNBackendType backend_type;
DNNModule *dnn_module;
DNNModel *model;
DNNInputData input;
DNNData input;
DNNData output;
} DRContext;
@ -137,7 +137,7 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
int t = i * out->width * 3 + j;
int t_in = (i + pad_size) * in->width * 3 + j + pad_size * 3;
out->data[0][k] = CLIP((int)((((float *)dr_context->input.data)[t_in] - dr_context->output.data[t]) * 255), 0, 255);
out->data[0][k] = CLIP((int)((((float *)dr_context->input.data)[t_in] - ((float *)dr_context->output.data)[t]) * 255), 0, 255);
}
}

View File

@ -41,7 +41,7 @@ typedef struct SRContext {
DNNBackendType backend_type;
DNNModule *dnn_module;
DNNModel *model;
DNNInputData input;
DNNData input;
DNNData output;
int scale_factor;
struct SwsContext *sws_contexts[3];