mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-13 21:28:01 +02:00
opus_celt: move quantization and band decoding to opus_pvq.c
A huge amount can be reused by the encoder, as the only thing which needs to be done would be to add a 10 line celt_icwrsi, a wrapper around it (celt_alg_quant) and templating the ff_celt_decode_band to replace entropy decoding functions with entropy encoding. There is no performance loss but in fact a performance gain of around 6% which is caused by the compiler being able to optimize the decoding more efficiently. Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
This commit is contained in:
parent
d2119f624d
commit
e538108c21
@ -443,7 +443,7 @@ OBJS-$(CONFIG_NELLYMOSER_ENCODER) += nellymoserenc.o nellymoser.o
|
||||
OBJS-$(CONFIG_NUV_DECODER) += nuv.o rtjpeg.o
|
||||
OBJS-$(CONFIG_ON2AVC_DECODER) += on2avc.o on2avcdata.o
|
||||
OBJS-$(CONFIG_OPUS_DECODER) += opusdec.o opus.o opus_celt.o opus_rc.o \
|
||||
opus_silk.o opustab.o vorbis_data.o
|
||||
opus_pvq.o opus_silk.o opustab.o vorbis_data.o
|
||||
OBJS-$(CONFIG_PAF_AUDIO_DECODER) += pafaudio.o
|
||||
OBJS-$(CONFIG_PAF_VIDEO_DECODER) += pafvideo.o
|
||||
OBJS-$(CONFIG_PAM_DECODER) += pnmdec.o pnm.o
|
||||
|
@ -43,16 +43,6 @@
|
||||
#define CELT_MAX_LOG_BLOCKS 3
|
||||
#define CELT_MAX_FRAME_SIZE (CELT_SHORT_BLOCKSIZE * (1 << CELT_MAX_LOG_BLOCKS))
|
||||
#define CELT_MAX_BANDS 21
|
||||
#define CELT_VECTORS 11
|
||||
#define CELT_ALLOC_STEPS 6
|
||||
#define CELT_FINE_OFFSET 21
|
||||
#define CELT_MAX_FINE_BITS 8
|
||||
#define CELT_NORM_SCALE 16384
|
||||
#define CELT_QTHETA_OFFSET 4
|
||||
#define CELT_QTHETA_OFFSET_TWOPHASE 16
|
||||
#define CELT_DEEMPH_COEFF 0.85000610f
|
||||
#define CELT_POSTFILTER_MINPERIOD 15
|
||||
#define CELT_ENERGY_SILENCE (-28.0f)
|
||||
|
||||
#define SILK_HISTORY 322
|
||||
#define SILK_MAX_LPC 16
|
||||
|
@ -24,109 +24,9 @@
|
||||
* Opus CELT decoder
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include "libavutil/float_dsp.h"
|
||||
#include "libavutil/libm.h"
|
||||
|
||||
#include "mdct15.h"
|
||||
#include "opus.h"
|
||||
#include "opus_celt.h"
|
||||
#include "opustab.h"
|
||||
|
||||
enum CeltSpread {
|
||||
CELT_SPREAD_NONE,
|
||||
CELT_SPREAD_LIGHT,
|
||||
CELT_SPREAD_NORMAL,
|
||||
CELT_SPREAD_AGGRESSIVE
|
||||
};
|
||||
|
||||
typedef struct CeltFrame {
|
||||
float energy[CELT_MAX_BANDS];
|
||||
float prev_energy[2][CELT_MAX_BANDS];
|
||||
|
||||
uint8_t collapse_masks[CELT_MAX_BANDS];
|
||||
|
||||
/* buffer for mdct output + postfilter */
|
||||
DECLARE_ALIGNED(32, float, buf)[2048];
|
||||
|
||||
/* postfilter parameters */
|
||||
int pf_period_new;
|
||||
float pf_gains_new[3];
|
||||
int pf_period;
|
||||
float pf_gains[3];
|
||||
int pf_period_old;
|
||||
float pf_gains_old[3];
|
||||
|
||||
float deemph_coeff;
|
||||
} CeltFrame;
|
||||
|
||||
struct CeltContext {
|
||||
// constant values that do not change during context lifetime
|
||||
AVCodecContext *avctx;
|
||||
MDCT15Context *imdct[4];
|
||||
AVFloatDSPContext *dsp;
|
||||
int output_channels;
|
||||
|
||||
// values that have inter-frame effect and must be reset on flush
|
||||
CeltFrame frame[2];
|
||||
uint32_t seed;
|
||||
int flushed;
|
||||
|
||||
// values that only affect a single frame
|
||||
int coded_channels;
|
||||
int framebits;
|
||||
int duration;
|
||||
|
||||
/* number of iMDCT blocks in the frame */
|
||||
int blocks;
|
||||
/* size of each block */
|
||||
int blocksize;
|
||||
|
||||
int startband;
|
||||
int endband;
|
||||
int codedbands;
|
||||
|
||||
int anticollapse_bit;
|
||||
|
||||
int intensitystereo;
|
||||
int dualstereo;
|
||||
enum CeltSpread spread;
|
||||
|
||||
int remaining;
|
||||
int remaining2;
|
||||
int fine_bits [CELT_MAX_BANDS];
|
||||
int fine_priority[CELT_MAX_BANDS];
|
||||
int pulses [CELT_MAX_BANDS];
|
||||
int tf_change [CELT_MAX_BANDS];
|
||||
|
||||
DECLARE_ALIGNED(32, float, coeffs)[2][CELT_MAX_FRAME_SIZE];
|
||||
DECLARE_ALIGNED(32, float, scratch)[22 * 8]; // MAX(ff_celt_freq_range) * 1<<CELT_MAX_LOG_BLOCKS
|
||||
};
|
||||
|
||||
static inline int16_t celt_cos(int16_t x)
|
||||
{
|
||||
x = (MUL16(x, x) + 4096) >> 13;
|
||||
x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x)))));
|
||||
return 1+x;
|
||||
}
|
||||
|
||||
static inline int celt_log2tan(int isin, int icos)
|
||||
{
|
||||
int lc, ls;
|
||||
lc = opus_ilog(icos);
|
||||
ls = opus_ilog(isin);
|
||||
icos <<= 15 - lc;
|
||||
isin <<= 15 - ls;
|
||||
return (ls << 11) - (lc << 11) +
|
||||
ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) -
|
||||
ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932);
|
||||
}
|
||||
|
||||
static inline uint32_t celt_rng(CeltContext *s)
|
||||
{
|
||||
s->seed = 1664525 * s->seed + 1013904223;
|
||||
return s->seed;
|
||||
}
|
||||
#include "opus_pvq.h"
|
||||
|
||||
static void celt_decode_coarse_energy(CeltContext *s, OpusRangeCoder *rc)
|
||||
{
|
||||
@ -579,711 +479,6 @@ static void celt_decode_allocation(CeltContext *s, OpusRangeCoder *rc)
|
||||
}
|
||||
}
|
||||
|
||||
static inline int celt_bits2pulses(const uint8_t *cache, int bits)
|
||||
{
|
||||
// TODO: Find the size of cache and make it into an array in the parameters list
|
||||
int i, low = 0, high;
|
||||
|
||||
high = cache[0];
|
||||
bits--;
|
||||
|
||||
for (i = 0; i < 6; i++) {
|
||||
int center = (low + high + 1) >> 1;
|
||||
if (cache[center] >= bits)
|
||||
high = center;
|
||||
else
|
||||
low = center;
|
||||
}
|
||||
|
||||
return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high;
|
||||
}
|
||||
|
||||
static inline int celt_pulses2bits(const uint8_t *cache, int pulses)
|
||||
{
|
||||
// TODO: Find the size of cache and make it into an array in the parameters list
|
||||
return (pulses == 0) ? 0 : cache[pulses] + 1;
|
||||
}
|
||||
|
||||
static inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X,
|
||||
int N, float g)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < N; i++)
|
||||
X[i] = g * iy[i];
|
||||
}
|
||||
|
||||
static void celt_exp_rotation1(float *X, unsigned int len, unsigned int stride,
|
||||
float c, float s)
|
||||
{
|
||||
float *Xptr;
|
||||
int i;
|
||||
|
||||
Xptr = X;
|
||||
for (i = 0; i < len - stride; i++) {
|
||||
float x1, x2;
|
||||
x1 = Xptr[0];
|
||||
x2 = Xptr[stride];
|
||||
Xptr[stride] = c * x2 + s * x1;
|
||||
*Xptr++ = c * x1 - s * x2;
|
||||
}
|
||||
|
||||
Xptr = &X[len - 2 * stride - 1];
|
||||
for (i = len - 2 * stride - 1; i >= 0; i--) {
|
||||
float x1, x2;
|
||||
x1 = Xptr[0];
|
||||
x2 = Xptr[stride];
|
||||
Xptr[stride] = c * x2 + s * x1;
|
||||
*Xptr-- = c * x1 - s * x2;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void celt_exp_rotation(float *X, unsigned int len,
|
||||
unsigned int stride, unsigned int K,
|
||||
enum CeltSpread spread)
|
||||
{
|
||||
unsigned int stride2 = 0;
|
||||
float c, s;
|
||||
float gain, theta;
|
||||
int i;
|
||||
|
||||
if (2*K >= len || spread == CELT_SPREAD_NONE)
|
||||
return;
|
||||
|
||||
gain = (float)len / (len + (20 - 5*spread) * K);
|
||||
theta = M_PI * gain * gain / 4;
|
||||
|
||||
c = cos(theta);
|
||||
s = sin(theta);
|
||||
|
||||
if (len >= stride << 3) {
|
||||
stride2 = 1;
|
||||
/* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
|
||||
It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
|
||||
while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len)
|
||||
stride2++;
|
||||
}
|
||||
|
||||
/*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
|
||||
extract_collapse_mask().*/
|
||||
len /= stride;
|
||||
for (i = 0; i < stride; i++) {
|
||||
if (stride2)
|
||||
celt_exp_rotation1(X + i * len, len, stride2, s, c);
|
||||
celt_exp_rotation1(X + i * len, len, 1, c, s);
|
||||
}
|
||||
}
|
||||
|
||||
static inline unsigned int celt_extract_collapse_mask(const int *iy,
|
||||
unsigned int N,
|
||||
unsigned int B)
|
||||
{
|
||||
unsigned int collapse_mask;
|
||||
int N0;
|
||||
int i, j;
|
||||
|
||||
if (B <= 1)
|
||||
return 1;
|
||||
|
||||
/*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
|
||||
exp_rotation().*/
|
||||
N0 = N/B;
|
||||
collapse_mask = 0;
|
||||
for (i = 0; i < B; i++)
|
||||
for (j = 0; j < N0; j++)
|
||||
collapse_mask |= (iy[i*N0+j]!=0)<<i;
|
||||
return collapse_mask;
|
||||
}
|
||||
|
||||
static inline void celt_renormalize_vector(float *X, int N, float gain)
|
||||
{
|
||||
int i;
|
||||
float g = 1e-15f;
|
||||
for (i = 0; i < N; i++)
|
||||
g += X[i] * X[i];
|
||||
g = gain / sqrtf(g);
|
||||
|
||||
for (i = 0; i < N; i++)
|
||||
X[i] *= g;
|
||||
}
|
||||
|
||||
static inline void celt_stereo_merge(float *X, float *Y, float mid, int N)
|
||||
{
|
||||
int i;
|
||||
float xp = 0, side = 0;
|
||||
float E[2];
|
||||
float mid2;
|
||||
float t, gain[2];
|
||||
|
||||
/* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
|
||||
for (i = 0; i < N; i++) {
|
||||
xp += X[i] * Y[i];
|
||||
side += Y[i] * Y[i];
|
||||
}
|
||||
|
||||
/* Compensating for the mid normalization */
|
||||
xp *= mid;
|
||||
mid2 = mid;
|
||||
E[0] = mid2 * mid2 + side - 2 * xp;
|
||||
E[1] = mid2 * mid2 + side + 2 * xp;
|
||||
if (E[0] < 6e-4f || E[1] < 6e-4f) {
|
||||
for (i = 0; i < N; i++)
|
||||
Y[i] = X[i];
|
||||
return;
|
||||
}
|
||||
|
||||
t = E[0];
|
||||
gain[0] = 1.0f / sqrtf(t);
|
||||
t = E[1];
|
||||
gain[1] = 1.0f / sqrtf(t);
|
||||
|
||||
for (i = 0; i < N; i++) {
|
||||
float value[2];
|
||||
/* Apply mid scaling (side is already scaled) */
|
||||
value[0] = mid * X[i];
|
||||
value[1] = Y[i];
|
||||
X[i] = gain[0] * (value[0] - value[1]);
|
||||
Y[i] = gain[1] * (value[0] + value[1]);
|
||||
}
|
||||
}
|
||||
|
||||
static void celt_interleave_hadamard(float *tmp, float *X, int N0,
|
||||
int stride, int hadamard)
|
||||
{
|
||||
int i, j;
|
||||
int N = N0*stride;
|
||||
|
||||
if (hadamard) {
|
||||
const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2;
|
||||
for (i = 0; i < stride; i++)
|
||||
for (j = 0; j < N0; j++)
|
||||
tmp[j*stride+i] = X[ordery[i]*N0+j];
|
||||
} else {
|
||||
for (i = 0; i < stride; i++)
|
||||
for (j = 0; j < N0; j++)
|
||||
tmp[j*stride+i] = X[i*N0+j];
|
||||
}
|
||||
|
||||
for (i = 0; i < N; i++)
|
||||
X[i] = tmp[i];
|
||||
}
|
||||
|
||||
static void celt_deinterleave_hadamard(float *tmp, float *X, int N0,
|
||||
int stride, int hadamard)
|
||||
{
|
||||
int i, j;
|
||||
int N = N0*stride;
|
||||
|
||||
if (hadamard) {
|
||||
const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2;
|
||||
for (i = 0; i < stride; i++)
|
||||
for (j = 0; j < N0; j++)
|
||||
tmp[ordery[i]*N0+j] = X[j*stride+i];
|
||||
} else {
|
||||
for (i = 0; i < stride; i++)
|
||||
for (j = 0; j < N0; j++)
|
||||
tmp[i*N0+j] = X[j*stride+i];
|
||||
}
|
||||
|
||||
for (i = 0; i < N; i++)
|
||||
X[i] = tmp[i];
|
||||
}
|
||||
|
||||
static void celt_haar1(float *X, int N0, int stride)
|
||||
{
|
||||
int i, j;
|
||||
N0 >>= 1;
|
||||
for (i = 0; i < stride; i++) {
|
||||
for (j = 0; j < N0; j++) {
|
||||
float x0 = X[stride * (2 * j + 0) + i];
|
||||
float x1 = X[stride * (2 * j + 1) + i];
|
||||
X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2;
|
||||
X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
|
||||
int dualstereo)
|
||||
{
|
||||
int qn, qb;
|
||||
int N2 = 2 * N - 1;
|
||||
if (dualstereo && N == 2)
|
||||
N2--;
|
||||
|
||||
/* The upper limit ensures that in a stereo split with itheta==16384, we'll
|
||||
* always have enough bits left over to code at least one pulse in the
|
||||
* side; otherwise it would collapse, since it doesn't get folded. */
|
||||
qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3);
|
||||
qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1;
|
||||
return qn;
|
||||
}
|
||||
|
||||
// this code was adapted from libopus
|
||||
static inline uint64_t celt_cwrsi(unsigned int N, unsigned int K, unsigned int i, int *y)
|
||||
{
|
||||
uint64_t norm = 0;
|
||||
uint32_t p;
|
||||
int s, val;
|
||||
int k0;
|
||||
|
||||
while (N > 2) {
|
||||
uint32_t q;
|
||||
|
||||
/*Lots of pulses case:*/
|
||||
if (K >= N) {
|
||||
const uint32_t *row = ff_celt_pvq_u_row[N];
|
||||
|
||||
/* Are the pulses in this dimension negative? */
|
||||
p = row[K + 1];
|
||||
s = -(i >= p);
|
||||
i -= p & s;
|
||||
|
||||
/*Count how many pulses were placed in this dimension.*/
|
||||
k0 = K;
|
||||
q = row[N];
|
||||
if (q > i) {
|
||||
K = N;
|
||||
do {
|
||||
p = ff_celt_pvq_u_row[--K][N];
|
||||
} while (p > i);
|
||||
} else
|
||||
for (p = row[K]; p > i; p = row[K])
|
||||
K--;
|
||||
|
||||
i -= p;
|
||||
val = (k0 - K + s) ^ s;
|
||||
norm += val * val;
|
||||
*y++ = val;
|
||||
} else { /*Lots of dimensions case:*/
|
||||
/*Are there any pulses in this dimension at all?*/
|
||||
p = ff_celt_pvq_u_row[K ][N];
|
||||
q = ff_celt_pvq_u_row[K + 1][N];
|
||||
|
||||
if (p <= i && i < q) {
|
||||
i -= p;
|
||||
*y++ = 0;
|
||||
} else {
|
||||
/*Are the pulses in this dimension negative?*/
|
||||
s = -(i >= q);
|
||||
i -= q & s;
|
||||
|
||||
/*Count how many pulses were placed in this dimension.*/
|
||||
k0 = K;
|
||||
do p = ff_celt_pvq_u_row[--K][N];
|
||||
while (p > i);
|
||||
|
||||
i -= p;
|
||||
val = (k0 - K + s) ^ s;
|
||||
norm += val * val;
|
||||
*y++ = val;
|
||||
}
|
||||
}
|
||||
N--;
|
||||
}
|
||||
|
||||
/* N == 2 */
|
||||
p = 2 * K + 1;
|
||||
s = -(i >= p);
|
||||
i -= p & s;
|
||||
k0 = K;
|
||||
K = (i + 1) / 2;
|
||||
|
||||
if (K)
|
||||
i -= 2 * K - 1;
|
||||
|
||||
val = (k0 - K + s) ^ s;
|
||||
norm += val * val;
|
||||
*y++ = val;
|
||||
|
||||
/* N==1 */
|
||||
s = -i;
|
||||
val = (K + s) ^ s;
|
||||
norm += val * val;
|
||||
*y = val;
|
||||
|
||||
return norm;
|
||||
}
|
||||
|
||||
static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, unsigned int N, unsigned int K)
|
||||
{
|
||||
unsigned int idx;
|
||||
#define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)])
|
||||
#define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1))
|
||||
idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K));
|
||||
return celt_cwrsi(N, K, idx, y);
|
||||
}
|
||||
|
||||
/** Decode pulse vector and combine the result with the pitch vector to produce
|
||||
the final normalised signal in the current band. */
|
||||
static inline unsigned int celt_alg_unquant(OpusRangeCoder *rc, float *X,
|
||||
unsigned int N, unsigned int K,
|
||||
enum CeltSpread spread,
|
||||
unsigned int blocks, float gain)
|
||||
{
|
||||
int y[176];
|
||||
|
||||
gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
|
||||
celt_normalize_residual(y, X, N, gain);
|
||||
celt_exp_rotation(X, N, blocks, K, spread);
|
||||
return celt_extract_collapse_mask(y, N, blocks);
|
||||
}
|
||||
|
||||
static unsigned int celt_decode_band(CeltContext *s, OpusRangeCoder *rc,
|
||||
const int band, float *X, float *Y,
|
||||
int N, int b, unsigned int blocks,
|
||||
float *lowband, int duration,
|
||||
float *lowband_out, int level,
|
||||
float gain, float *lowband_scratch,
|
||||
int fill)
|
||||
{
|
||||
const uint8_t *cache;
|
||||
int dualstereo, split;
|
||||
int imid = 0, iside = 0;
|
||||
unsigned int N0 = N;
|
||||
int N_B;
|
||||
int N_B0;
|
||||
int B0 = blocks;
|
||||
int time_divide = 0;
|
||||
int recombine = 0;
|
||||
int inv = 0;
|
||||
float mid = 0, side = 0;
|
||||
int longblocks = (B0 == 1);
|
||||
unsigned int cm = 0;
|
||||
|
||||
N_B0 = N_B = N / blocks;
|
||||
split = dualstereo = (Y != NULL);
|
||||
|
||||
if (N == 1) {
|
||||
/* special case for one sample */
|
||||
int i;
|
||||
float *x = X;
|
||||
for (i = 0; i <= dualstereo; i++) {
|
||||
int sign = 0;
|
||||
if (s->remaining2 >= 1<<3) {
|
||||
sign = ff_opus_rc_get_raw(rc, 1);
|
||||
s->remaining2 -= 1 << 3;
|
||||
b -= 1 << 3;
|
||||
}
|
||||
x[0] = sign ? -1.0f : 1.0f;
|
||||
x = Y;
|
||||
}
|
||||
if (lowband_out)
|
||||
lowband_out[0] = X[0];
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (!dualstereo && level == 0) {
|
||||
int tf_change = s->tf_change[band];
|
||||
int k;
|
||||
if (tf_change > 0)
|
||||
recombine = tf_change;
|
||||
/* Band recombining to increase frequency resolution */
|
||||
|
||||
if (lowband &&
|
||||
(recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
|
||||
int j;
|
||||
for (j = 0; j < N; j++)
|
||||
lowband_scratch[j] = lowband[j];
|
||||
lowband = lowband_scratch;
|
||||
}
|
||||
|
||||
for (k = 0; k < recombine; k++) {
|
||||
if (lowband)
|
||||
celt_haar1(lowband, N >> k, 1 << k);
|
||||
fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2;
|
||||
}
|
||||
blocks >>= recombine;
|
||||
N_B <<= recombine;
|
||||
|
||||
/* Increasing the time resolution */
|
||||
while ((N_B & 1) == 0 && tf_change < 0) {
|
||||
if (lowband)
|
||||
celt_haar1(lowband, N_B, blocks);
|
||||
fill |= fill << blocks;
|
||||
blocks <<= 1;
|
||||
N_B >>= 1;
|
||||
time_divide++;
|
||||
tf_change++;
|
||||
}
|
||||
B0 = blocks;
|
||||
N_B0 = N_B;
|
||||
|
||||
/* Reorganize the samples in time order instead of frequency order */
|
||||
if (B0 > 1 && lowband)
|
||||
celt_deinterleave_hadamard(s->scratch, lowband, N_B >> recombine,
|
||||
B0 << recombine, longblocks);
|
||||
}
|
||||
|
||||
/* If we need 1.5 more bit than we can produce, split the band in two. */
|
||||
cache = ff_celt_cache_bits +
|
||||
ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
|
||||
if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
|
||||
N >>= 1;
|
||||
Y = X + N;
|
||||
split = 1;
|
||||
duration -= 1;
|
||||
if (blocks == 1)
|
||||
fill = (fill & 1) | (fill << 1);
|
||||
blocks = (blocks + 1) >> 1;
|
||||
}
|
||||
|
||||
if (split) {
|
||||
int qn;
|
||||
int itheta = 0;
|
||||
int mbits, sbits, delta;
|
||||
int qalloc;
|
||||
int pulse_cap;
|
||||
int offset;
|
||||
int orig_fill;
|
||||
int tell;
|
||||
|
||||
/* Decide on the resolution to give to the split parameter theta */
|
||||
pulse_cap = ff_celt_log_freq_range[band] + duration * 8;
|
||||
offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
|
||||
CELT_QTHETA_OFFSET);
|
||||
qn = (dualstereo && band >= s->intensitystereo) ? 1 :
|
||||
celt_compute_qn(N, b, offset, pulse_cap, dualstereo);
|
||||
tell = opus_rc_tell_frac(rc);
|
||||
if (qn != 1) {
|
||||
/* Entropy coding of the angle. We use a uniform pdf for the
|
||||
time split, a step for stereo, and a triangular one for the rest. */
|
||||
if (dualstereo && N > 2)
|
||||
itheta = ff_opus_rc_dec_uint_step(rc, qn/2);
|
||||
else if (dualstereo || B0 > 1)
|
||||
itheta = ff_opus_rc_dec_uint(rc, qn+1);
|
||||
else
|
||||
itheta = ff_opus_rc_dec_uint_tri(rc, qn);
|
||||
itheta = itheta * 16384 / qn;
|
||||
/* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
|
||||
Let's do that at higher complexity */
|
||||
} else if (dualstereo) {
|
||||
inv = (b > 2 << 3 && s->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0;
|
||||
itheta = 0;
|
||||
}
|
||||
qalloc = opus_rc_tell_frac(rc) - tell;
|
||||
b -= qalloc;
|
||||
|
||||
orig_fill = fill;
|
||||
if (itheta == 0) {
|
||||
imid = 32767;
|
||||
iside = 0;
|
||||
fill = av_mod_uintp2(fill, blocks);
|
||||
delta = -16384;
|
||||
} else if (itheta == 16384) {
|
||||
imid = 0;
|
||||
iside = 32767;
|
||||
fill &= ((1 << blocks) - 1) << blocks;
|
||||
delta = 16384;
|
||||
} else {
|
||||
imid = celt_cos(itheta);
|
||||
iside = celt_cos(16384-itheta);
|
||||
/* This is the mid vs side allocation that minimizes squared error
|
||||
in that band. */
|
||||
delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
|
||||
}
|
||||
|
||||
mid = imid / 32768.0f;
|
||||
side = iside / 32768.0f;
|
||||
|
||||
/* This is a special case for N=2 that only works for stereo and takes
|
||||
advantage of the fact that mid and side are orthogonal to encode
|
||||
the side with just one bit. */
|
||||
if (N == 2 && dualstereo) {
|
||||
int c;
|
||||
int sign = 0;
|
||||
float tmp;
|
||||
float *x2, *y2;
|
||||
mbits = b;
|
||||
/* Only need one bit for the side */
|
||||
sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
|
||||
mbits -= sbits;
|
||||
c = (itheta > 8192);
|
||||
s->remaining2 -= qalloc+sbits;
|
||||
|
||||
x2 = c ? Y : X;
|
||||
y2 = c ? X : Y;
|
||||
if (sbits)
|
||||
sign = ff_opus_rc_get_raw(rc, 1);
|
||||
sign = 1 - 2 * sign;
|
||||
/* We use orig_fill here because we want to fold the side, but if
|
||||
itheta==16384, we'll have cleared the low bits of fill. */
|
||||
cm = celt_decode_band(s, rc, band, x2, NULL, N, mbits, blocks,
|
||||
lowband, duration, lowband_out, level, gain,
|
||||
lowband_scratch, orig_fill);
|
||||
/* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
|
||||
and there's no need to worry about mixing with the other channel. */
|
||||
y2[0] = -sign * x2[1];
|
||||
y2[1] = sign * x2[0];
|
||||
X[0] *= mid;
|
||||
X[1] *= mid;
|
||||
Y[0] *= side;
|
||||
Y[1] *= side;
|
||||
tmp = X[0];
|
||||
X[0] = tmp - Y[0];
|
||||
Y[0] = tmp + Y[0];
|
||||
tmp = X[1];
|
||||
X[1] = tmp - Y[1];
|
||||
Y[1] = tmp + Y[1];
|
||||
} else {
|
||||
/* "Normal" split code */
|
||||
float *next_lowband2 = NULL;
|
||||
float *next_lowband_out1 = NULL;
|
||||
int next_level = 0;
|
||||
int rebalance;
|
||||
|
||||
/* Give more bits to low-energy MDCTs than they would
|
||||
* otherwise deserve */
|
||||
if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) {
|
||||
if (itheta > 8192)
|
||||
/* Rough approximation for pre-echo masking */
|
||||
delta -= delta >> (4 - duration);
|
||||
else
|
||||
/* Corresponds to a forward-masking slope of
|
||||
* 1.5 dB per 10 ms */
|
||||
delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
|
||||
}
|
||||
mbits = av_clip((b - delta) / 2, 0, b);
|
||||
sbits = b - mbits;
|
||||
s->remaining2 -= qalloc;
|
||||
|
||||
if (lowband && !dualstereo)
|
||||
next_lowband2 = lowband + N; /* >32-bit split case */
|
||||
|
||||
/* Only stereo needs to pass on lowband_out.
|
||||
* Otherwise, it's handled at the end */
|
||||
if (dualstereo)
|
||||
next_lowband_out1 = lowband_out;
|
||||
else
|
||||
next_level = level + 1;
|
||||
|
||||
rebalance = s->remaining2;
|
||||
if (mbits >= sbits) {
|
||||
/* In stereo mode, we do not apply a scaling to the mid
|
||||
* because we need the normalized mid for folding later */
|
||||
cm = celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
|
||||
lowband, duration, next_lowband_out1,
|
||||
next_level, dualstereo ? 1.0f : (gain * mid),
|
||||
lowband_scratch, fill);
|
||||
|
||||
rebalance = mbits - (rebalance - s->remaining2);
|
||||
if (rebalance > 3 << 3 && itheta != 0)
|
||||
sbits += rebalance - (3 << 3);
|
||||
|
||||
/* For a stereo split, the high bits of fill are always zero,
|
||||
* so no folding will be done to the side. */
|
||||
cm |= celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
|
||||
next_lowband2, duration, NULL,
|
||||
next_level, gain * side, NULL,
|
||||
fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
|
||||
} else {
|
||||
/* For a stereo split, the high bits of fill are always zero,
|
||||
* so no folding will be done to the side. */
|
||||
cm = celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
|
||||
next_lowband2, duration, NULL,
|
||||
next_level, gain * side, NULL,
|
||||
fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
|
||||
|
||||
rebalance = sbits - (rebalance - s->remaining2);
|
||||
if (rebalance > 3 << 3 && itheta != 16384)
|
||||
mbits += rebalance - (3 << 3);
|
||||
|
||||
/* In stereo mode, we do not apply a scaling to the mid because
|
||||
* we need the normalized mid for folding later */
|
||||
cm |= celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
|
||||
lowband, duration, next_lowband_out1,
|
||||
next_level, dualstereo ? 1.0f : (gain * mid),
|
||||
lowband_scratch, fill);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* This is the basic no-split case */
|
||||
unsigned int q = celt_bits2pulses(cache, b);
|
||||
unsigned int curr_bits = celt_pulses2bits(cache, q);
|
||||
s->remaining2 -= curr_bits;
|
||||
|
||||
/* Ensures we can never bust the budget */
|
||||
while (s->remaining2 < 0 && q > 0) {
|
||||
s->remaining2 += curr_bits;
|
||||
curr_bits = celt_pulses2bits(cache, --q);
|
||||
s->remaining2 -= curr_bits;
|
||||
}
|
||||
|
||||
if (q != 0) {
|
||||
/* Finally do the actual quantization */
|
||||
cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
|
||||
s->spread, blocks, gain);
|
||||
} else {
|
||||
/* If there's no pulse, fill the band anyway */
|
||||
int j;
|
||||
unsigned int cm_mask = (1 << blocks) - 1;
|
||||
fill &= cm_mask;
|
||||
if (!fill) {
|
||||
for (j = 0; j < N; j++)
|
||||
X[j] = 0.0f;
|
||||
} else {
|
||||
if (!lowband) {
|
||||
/* Noise */
|
||||
for (j = 0; j < N; j++)
|
||||
X[j] = (((int32_t)celt_rng(s)) >> 20);
|
||||
cm = cm_mask;
|
||||
} else {
|
||||
/* Folded spectrum */
|
||||
for (j = 0; j < N; j++) {
|
||||
/* About 48 dB below the "normal" folding level */
|
||||
X[j] = lowband[j] + (((celt_rng(s)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
|
||||
}
|
||||
cm = fill;
|
||||
}
|
||||
celt_renormalize_vector(X, N, gain);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* This code is used by the decoder and by the resynthesis-enabled encoder */
|
||||
if (dualstereo) {
|
||||
int j;
|
||||
if (N != 2)
|
||||
celt_stereo_merge(X, Y, mid, N);
|
||||
if (inv) {
|
||||
for (j = 0; j < N; j++)
|
||||
Y[j] *= -1;
|
||||
}
|
||||
} else if (level == 0) {
|
||||
int k;
|
||||
|
||||
/* Undo the sample reorganization going from time order to frequency order */
|
||||
if (B0 > 1)
|
||||
celt_interleave_hadamard(s->scratch, X, N_B>>recombine,
|
||||
B0<<recombine, longblocks);
|
||||
|
||||
/* Undo time-freq changes that we did earlier */
|
||||
N_B = N_B0;
|
||||
blocks = B0;
|
||||
for (k = 0; k < time_divide; k++) {
|
||||
blocks >>= 1;
|
||||
N_B <<= 1;
|
||||
cm |= cm >> blocks;
|
||||
celt_haar1(X, N_B, blocks);
|
||||
}
|
||||
|
||||
for (k = 0; k < recombine; k++) {
|
||||
cm = ff_celt_bit_deinterleave[cm];
|
||||
celt_haar1(X, N0>>k, 1<<k);
|
||||
}
|
||||
blocks <<= recombine;
|
||||
|
||||
/* Scale output for later folding */
|
||||
if (lowband_out) {
|
||||
int j;
|
||||
float n = sqrtf(N0);
|
||||
for (j = 0; j < N0; j++)
|
||||
lowband_out[j] = n * X[j];
|
||||
}
|
||||
cm = av_mod_uintp2(cm, blocks);
|
||||
}
|
||||
return cm;
|
||||
}
|
||||
|
||||
static void celt_denormalize(CeltContext *s, CeltFrame *frame, float *data)
|
||||
{
|
||||
int i, j;
|
||||
@ -1562,18 +757,17 @@ static void celt_decode_bands(CeltContext *s, OpusRangeCoder *rc)
|
||||
}
|
||||
|
||||
if (s->dualstereo) {
|
||||
cm[0] = celt_decode_band(s, rc, i, X, NULL, band_size, b / 2, s->blocks,
|
||||
effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
|
||||
norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);
|
||||
cm[0] = ff_celt_decode_band(s, rc, i, X, NULL, band_size, b / 2, s->blocks,
|
||||
effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
|
||||
norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);
|
||||
|
||||
cm[1] = celt_decode_band(s, rc, i, Y, NULL, band_size, b/2, s->blocks,
|
||||
effective_lowband != -1 ? norm2 + (effective_lowband << s->duration) : NULL, s->duration,
|
||||
norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
|
||||
cm[1] = ff_celt_decode_band(s, rc, i, Y, NULL, band_size, b/2, s->blocks,
|
||||
effective_lowband != -1 ? norm2 + (effective_lowband << s->duration) : NULL, s->duration,
|
||||
norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
|
||||
} else {
|
||||
cm[0] = celt_decode_band(s, rc, i, X, Y, band_size, b, s->blocks,
|
||||
effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
|
||||
norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]);
|
||||
|
||||
cm[0] = ff_celt_decode_band(s, rc, i, X, Y, band_size, b, s->blocks,
|
||||
effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
|
||||
norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]);
|
||||
cm[1] = cm[0];
|
||||
}
|
||||
|
||||
|
133
libavcodec/opus_celt.h
Normal file
133
libavcodec/opus_celt.h
Normal file
@ -0,0 +1,133 @@
|
||||
/*
|
||||
* Opus decoder/demuxer common functions
|
||||
* Copyright (c) 2012 Andrew D'Addesio
|
||||
* Copyright (c) 2013-2014 Mozilla Corporation
|
||||
* Copyright (c) 2016 Rostislav Pehlivanov <atomnuker@gmail.com>
|
||||
*
|
||||
* This file is part of FFmpeg.
|
||||
*
|
||||
* FFmpeg is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* FFmpeg is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with FFmpeg; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#ifndef AVCODEC_OPUS_CELT_H
|
||||
#define AVCODEC_OPUS_CELT_H
|
||||
|
||||
#include "opus.h"
|
||||
|
||||
#include "mdct15.h"
|
||||
#include "libavutil/float_dsp.h"
|
||||
#include "libavutil/libm.h"
|
||||
|
||||
#define CELT_VECTORS 11
|
||||
#define CELT_ALLOC_STEPS 6
|
||||
#define CELT_FINE_OFFSET 21
|
||||
#define CELT_MAX_FINE_BITS 8
|
||||
#define CELT_NORM_SCALE 16384
|
||||
#define CELT_QTHETA_OFFSET 4
|
||||
#define CELT_QTHETA_OFFSET_TWOPHASE 16
|
||||
#define CELT_DEEMPH_COEFF 0.85000610f
|
||||
#define CELT_POSTFILTER_MINPERIOD 15
|
||||
#define CELT_ENERGY_SILENCE (-28.0f)
|
||||
|
||||
enum CeltSpread {
|
||||
CELT_SPREAD_NONE,
|
||||
CELT_SPREAD_LIGHT,
|
||||
CELT_SPREAD_NORMAL,
|
||||
CELT_SPREAD_AGGRESSIVE
|
||||
};
|
||||
|
||||
typedef struct CeltFrame {
|
||||
float energy[CELT_MAX_BANDS];
|
||||
float prev_energy[2][CELT_MAX_BANDS];
|
||||
|
||||
uint8_t collapse_masks[CELT_MAX_BANDS];
|
||||
|
||||
/* buffer for mdct output + postfilter */
|
||||
DECLARE_ALIGNED(32, float, buf)[2048];
|
||||
|
||||
/* postfilter parameters */
|
||||
int pf_period_new;
|
||||
float pf_gains_new[3];
|
||||
int pf_period;
|
||||
float pf_gains[3];
|
||||
int pf_period_old;
|
||||
float pf_gains_old[3];
|
||||
|
||||
float deemph_coeff;
|
||||
} CeltFrame;
|
||||
|
||||
struct CeltContext {
|
||||
// constant values that do not change during context lifetime
|
||||
AVCodecContext *avctx;
|
||||
MDCT15Context *imdct[4];
|
||||
AVFloatDSPContext *dsp;
|
||||
int output_channels;
|
||||
|
||||
// values that have inter-frame effect and must be reset on flush
|
||||
CeltFrame frame[2];
|
||||
uint32_t seed;
|
||||
int flushed;
|
||||
|
||||
// values that only affect a single frame
|
||||
int coded_channels;
|
||||
int framebits;
|
||||
int duration;
|
||||
|
||||
/* number of iMDCT blocks in the frame */
|
||||
int blocks;
|
||||
/* size of each block */
|
||||
int blocksize;
|
||||
|
||||
int startband;
|
||||
int endband;
|
||||
int codedbands;
|
||||
|
||||
int anticollapse_bit;
|
||||
|
||||
int intensitystereo;
|
||||
int dualstereo;
|
||||
enum CeltSpread spread;
|
||||
|
||||
int remaining;
|
||||
int remaining2;
|
||||
int fine_bits [CELT_MAX_BANDS];
|
||||
int fine_priority[CELT_MAX_BANDS];
|
||||
int pulses [CELT_MAX_BANDS];
|
||||
int tf_change [CELT_MAX_BANDS];
|
||||
|
||||
DECLARE_ALIGNED(32, float, coeffs)[2][CELT_MAX_FRAME_SIZE];
|
||||
DECLARE_ALIGNED(32, float, scratch)[22 * 8]; // MAX(ff_celt_freq_range) * 1<<CELT_MAX_LOG_BLOCKS
|
||||
};
|
||||
|
||||
/* LCG for noise generation */
|
||||
static av_always_inline uint32_t celt_rng(CeltContext *s)
|
||||
{
|
||||
s->seed = 1664525 * s->seed + 1013904223;
|
||||
return s->seed;
|
||||
}
|
||||
|
||||
static av_always_inline void celt_renormalize_vector(float *X, int N, float gain)
|
||||
{
|
||||
int i;
|
||||
float g = 1e-15f;
|
||||
for (i = 0; i < N; i++)
|
||||
g += X[i] * X[i];
|
||||
g = gain / sqrtf(g);
|
||||
|
||||
for (i = 0; i < N; i++)
|
||||
X[i] *= g;
|
||||
}
|
||||
|
||||
#endif /* AVCODEC_OPUS_CELT_H */
|
729
libavcodec/opus_pvq.c
Normal file
729
libavcodec/opus_pvq.c
Normal file
@ -0,0 +1,729 @@
|
||||
/*
|
||||
* Copyright (c) 2012 Andrew D'Addesio
|
||||
* Copyright (c) 2013-2014 Mozilla Corporation
|
||||
* Copyright (c) 2016 Rostislav Pehlivanov <atomnuker@gmail.com>
|
||||
*
|
||||
* This file is part of FFmpeg.
|
||||
*
|
||||
* FFmpeg is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* FFmpeg is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with FFmpeg; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#include "opustab.h"
|
||||
#include "opus_pvq.h"
|
||||
|
||||
#define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)])
|
||||
#define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1))
|
||||
|
||||
static inline int16_t celt_cos(int16_t x)
|
||||
{
|
||||
x = (MUL16(x, x) + 4096) >> 13;
|
||||
x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x)))));
|
||||
return 1+x;
|
||||
}
|
||||
|
||||
static inline int celt_log2tan(int isin, int icos)
|
||||
{
|
||||
int lc, ls;
|
||||
lc = opus_ilog(icos);
|
||||
ls = opus_ilog(isin);
|
||||
icos <<= 15 - lc;
|
||||
isin <<= 15 - ls;
|
||||
return (ls << 11) - (lc << 11) +
|
||||
ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) -
|
||||
ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932);
|
||||
}
|
||||
|
||||
static inline int celt_bits2pulses(const uint8_t *cache, int bits)
|
||||
{
|
||||
// TODO: Find the size of cache and make it into an array in the parameters list
|
||||
int i, low = 0, high;
|
||||
|
||||
high = cache[0];
|
||||
bits--;
|
||||
|
||||
for (i = 0; i < 6; i++) {
|
||||
int center = (low + high + 1) >> 1;
|
||||
if (cache[center] >= bits)
|
||||
high = center;
|
||||
else
|
||||
low = center;
|
||||
}
|
||||
|
||||
return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high;
|
||||
}
|
||||
|
||||
static inline int celt_pulses2bits(const uint8_t *cache, int pulses)
|
||||
{
|
||||
// TODO: Find the size of cache and make it into an array in the parameters list
|
||||
return (pulses == 0) ? 0 : cache[pulses] + 1;
|
||||
}
|
||||
|
||||
static inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X,
|
||||
int N, float g)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < N; i++)
|
||||
X[i] = g * iy[i];
|
||||
}
|
||||
|
||||
static void celt_exp_rotation1(float *X, uint32_t len, uint32_t stride,
|
||||
float c, float s)
|
||||
{
|
||||
float *Xptr;
|
||||
int i;
|
||||
|
||||
Xptr = X;
|
||||
for (i = 0; i < len - stride; i++) {
|
||||
float x1, x2;
|
||||
x1 = Xptr[0];
|
||||
x2 = Xptr[stride];
|
||||
Xptr[stride] = c * x2 + s * x1;
|
||||
*Xptr++ = c * x1 - s * x2;
|
||||
}
|
||||
|
||||
Xptr = &X[len - 2 * stride - 1];
|
||||
for (i = len - 2 * stride - 1; i >= 0; i--) {
|
||||
float x1, x2;
|
||||
x1 = Xptr[0];
|
||||
x2 = Xptr[stride];
|
||||
Xptr[stride] = c * x2 + s * x1;
|
||||
*Xptr-- = c * x1 - s * x2;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void celt_exp_rotation(float *X, uint32_t len,
|
||||
uint32_t stride, uint32_t K,
|
||||
enum CeltSpread spread)
|
||||
{
|
||||
uint32_t stride2 = 0;
|
||||
float c, s;
|
||||
float gain, theta;
|
||||
int i;
|
||||
|
||||
if (2*K >= len || spread == CELT_SPREAD_NONE)
|
||||
return;
|
||||
|
||||
gain = (float)len / (len + (20 - 5*spread) * K);
|
||||
theta = M_PI * gain * gain / 4;
|
||||
|
||||
c = cosf(theta);
|
||||
s = sinf(theta);
|
||||
|
||||
if (len >= stride << 3) {
|
||||
stride2 = 1;
|
||||
/* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
|
||||
It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
|
||||
while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len)
|
||||
stride2++;
|
||||
}
|
||||
|
||||
/*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
|
||||
extract_collapse_mask().*/
|
||||
len /= stride;
|
||||
for (i = 0; i < stride; i++) {
|
||||
if (stride2)
|
||||
celt_exp_rotation1(X + i * len, len, stride2, s, c);
|
||||
celt_exp_rotation1(X + i * len, len, 1, c, s);
|
||||
}
|
||||
}
|
||||
|
||||
static inline uint32_t celt_extract_collapse_mask(const int *iy, uint32_t N, uint32_t B)
|
||||
{
|
||||
uint32_t collapse_mask;
|
||||
int N0;
|
||||
int i, j;
|
||||
|
||||
if (B <= 1)
|
||||
return 1;
|
||||
|
||||
/*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
|
||||
exp_rotation().*/
|
||||
N0 = N/B;
|
||||
collapse_mask = 0;
|
||||
for (i = 0; i < B; i++)
|
||||
for (j = 0; j < N0; j++)
|
||||
collapse_mask |= (iy[i*N0+j]!=0)<<i;
|
||||
return collapse_mask;
|
||||
}
|
||||
|
||||
static inline void celt_stereo_merge(float *X, float *Y, float mid, int N)
|
||||
{
|
||||
int i;
|
||||
float xp = 0, side = 0;
|
||||
float E[2];
|
||||
float mid2;
|
||||
float t, gain[2];
|
||||
|
||||
/* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
|
||||
for (i = 0; i < N; i++) {
|
||||
xp += X[i] * Y[i];
|
||||
side += Y[i] * Y[i];
|
||||
}
|
||||
|
||||
/* Compensating for the mid normalization */
|
||||
xp *= mid;
|
||||
mid2 = mid;
|
||||
E[0] = mid2 * mid2 + side - 2 * xp;
|
||||
E[1] = mid2 * mid2 + side + 2 * xp;
|
||||
if (E[0] < 6e-4f || E[1] < 6e-4f) {
|
||||
for (i = 0; i < N; i++)
|
||||
Y[i] = X[i];
|
||||
return;
|
||||
}
|
||||
|
||||
t = E[0];
|
||||
gain[0] = 1.0f / sqrtf(t);
|
||||
t = E[1];
|
||||
gain[1] = 1.0f / sqrtf(t);
|
||||
|
||||
for (i = 0; i < N; i++) {
|
||||
float value[2];
|
||||
/* Apply mid scaling (side is already scaled) */
|
||||
value[0] = mid * X[i];
|
||||
value[1] = Y[i];
|
||||
X[i] = gain[0] * (value[0] - value[1]);
|
||||
Y[i] = gain[1] * (value[0] + value[1]);
|
||||
}
|
||||
}
|
||||
|
||||
static void celt_interleave_hadamard(float *tmp, float *X, int N0,
|
||||
int stride, int hadamard)
|
||||
{
|
||||
int i, j;
|
||||
int N = N0*stride;
|
||||
|
||||
if (hadamard) {
|
||||
const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2;
|
||||
for (i = 0; i < stride; i++)
|
||||
for (j = 0; j < N0; j++)
|
||||
tmp[j*stride+i] = X[ordery[i]*N0+j];
|
||||
} else {
|
||||
for (i = 0; i < stride; i++)
|
||||
for (j = 0; j < N0; j++)
|
||||
tmp[j*stride+i] = X[i*N0+j];
|
||||
}
|
||||
|
||||
for (i = 0; i < N; i++)
|
||||
X[i] = tmp[i];
|
||||
}
|
||||
|
||||
static void celt_deinterleave_hadamard(float *tmp, float *X, int N0,
|
||||
int stride, int hadamard)
|
||||
{
|
||||
int i, j;
|
||||
int N = N0*stride;
|
||||
|
||||
if (hadamard) {
|
||||
const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2;
|
||||
for (i = 0; i < stride; i++)
|
||||
for (j = 0; j < N0; j++)
|
||||
tmp[ordery[i]*N0+j] = X[j*stride+i];
|
||||
} else {
|
||||
for (i = 0; i < stride; i++)
|
||||
for (j = 0; j < N0; j++)
|
||||
tmp[i*N0+j] = X[j*stride+i];
|
||||
}
|
||||
|
||||
for (i = 0; i < N; i++)
|
||||
X[i] = tmp[i];
|
||||
}
|
||||
|
||||
static void celt_haar1(float *X, int N0, int stride)
|
||||
{
|
||||
int i, j;
|
||||
N0 >>= 1;
|
||||
for (i = 0; i < stride; i++) {
|
||||
for (j = 0; j < N0; j++) {
|
||||
float x0 = X[stride * (2 * j + 0) + i];
|
||||
float x1 = X[stride * (2 * j + 1) + i];
|
||||
X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2;
|
||||
X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
|
||||
int dualstereo)
|
||||
{
|
||||
int qn, qb;
|
||||
int N2 = 2 * N - 1;
|
||||
if (dualstereo && N == 2)
|
||||
N2--;
|
||||
|
||||
/* The upper limit ensures that in a stereo split with itheta==16384, we'll
|
||||
* always have enough bits left over to code at least one pulse in the
|
||||
* side; otherwise it would collapse, since it doesn't get folded. */
|
||||
qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3);
|
||||
qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1;
|
||||
return qn;
|
||||
}
|
||||
|
||||
// this code was adapted from libopus
|
||||
static inline uint64_t celt_cwrsi(uint32_t N, uint32_t K, uint32_t i, int *y)
|
||||
{
|
||||
uint64_t norm = 0;
|
||||
uint32_t p;
|
||||
int s, val;
|
||||
int k0;
|
||||
|
||||
while (N > 2) {
|
||||
uint32_t q;
|
||||
|
||||
/*Lots of pulses case:*/
|
||||
if (K >= N) {
|
||||
const uint32_t *row = ff_celt_pvq_u_row[N];
|
||||
|
||||
/* Are the pulses in this dimension negative? */
|
||||
p = row[K + 1];
|
||||
s = -(i >= p);
|
||||
i -= p & s;
|
||||
|
||||
/*Count how many pulses were placed in this dimension.*/
|
||||
k0 = K;
|
||||
q = row[N];
|
||||
if (q > i) {
|
||||
K = N;
|
||||
do {
|
||||
p = ff_celt_pvq_u_row[--K][N];
|
||||
} while (p > i);
|
||||
} else
|
||||
for (p = row[K]; p > i; p = row[K])
|
||||
K--;
|
||||
|
||||
i -= p;
|
||||
val = (k0 - K + s) ^ s;
|
||||
norm += val * val;
|
||||
*y++ = val;
|
||||
} else { /*Lots of dimensions case:*/
|
||||
/*Are there any pulses in this dimension at all?*/
|
||||
p = ff_celt_pvq_u_row[K ][N];
|
||||
q = ff_celt_pvq_u_row[K + 1][N];
|
||||
|
||||
if (p <= i && i < q) {
|
||||
i -= p;
|
||||
*y++ = 0;
|
||||
} else {
|
||||
/*Are the pulses in this dimension negative?*/
|
||||
s = -(i >= q);
|
||||
i -= q & s;
|
||||
|
||||
/*Count how many pulses were placed in this dimension.*/
|
||||
k0 = K;
|
||||
do p = ff_celt_pvq_u_row[--K][N];
|
||||
while (p > i);
|
||||
|
||||
i -= p;
|
||||
val = (k0 - K + s) ^ s;
|
||||
norm += val * val;
|
||||
*y++ = val;
|
||||
}
|
||||
}
|
||||
N--;
|
||||
}
|
||||
|
||||
/* N == 2 */
|
||||
p = 2 * K + 1;
|
||||
s = -(i >= p);
|
||||
i -= p & s;
|
||||
k0 = K;
|
||||
K = (i + 1) / 2;
|
||||
|
||||
if (K)
|
||||
i -= 2 * K - 1;
|
||||
|
||||
val = (k0 - K + s) ^ s;
|
||||
norm += val * val;
|
||||
*y++ = val;
|
||||
|
||||
/* N==1 */
|
||||
s = -i;
|
||||
val = (K + s) ^ s;
|
||||
norm += val * val;
|
||||
*y = val;
|
||||
|
||||
return norm;
|
||||
}
|
||||
|
||||
static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
|
||||
{
|
||||
const uint32_t idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K));
|
||||
return celt_cwrsi(N, K, idx, y);
|
||||
}
|
||||
|
||||
/** Decode pulse vector and combine the result with the pitch vector to produce
|
||||
the final normalised signal in the current band. */
|
||||
static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
|
||||
enum CeltSpread spread, uint32_t blocks, float gain)
|
||||
{
|
||||
int y[176];
|
||||
|
||||
gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
|
||||
celt_normalize_residual(y, X, N, gain);
|
||||
celt_exp_rotation(X, N, blocks, K, spread);
|
||||
return celt_extract_collapse_mask(y, N, blocks);
|
||||
}
|
||||
|
||||
uint32_t ff_celt_decode_band(CeltContext *s, OpusRangeCoder *rc, const int band,
|
||||
float *X, float *Y, int N, int b, uint32_t blocks,
|
||||
float *lowband, int duration, float *lowband_out, int level,
|
||||
float gain, float *lowband_scratch, int fill)
|
||||
{
|
||||
const uint8_t *cache;
|
||||
int dualstereo, split;
|
||||
int imid = 0, iside = 0;
|
||||
uint32_t N0 = N;
|
||||
int N_B;
|
||||
int N_B0;
|
||||
int B0 = blocks;
|
||||
int time_divide = 0;
|
||||
int recombine = 0;
|
||||
int inv = 0;
|
||||
float mid = 0, side = 0;
|
||||
int longblocks = (B0 == 1);
|
||||
uint32_t cm = 0;
|
||||
|
||||
N_B0 = N_B = N / blocks;
|
||||
split = dualstereo = (Y != NULL);
|
||||
|
||||
if (N == 1) {
|
||||
/* special case for one sample */
|
||||
int i;
|
||||
float *x = X;
|
||||
for (i = 0; i <= dualstereo; i++) {
|
||||
int sign = 0;
|
||||
if (s->remaining2 >= 1<<3) {
|
||||
sign = ff_opus_rc_get_raw(rc, 1);
|
||||
s->remaining2 -= 1 << 3;
|
||||
b -= 1 << 3;
|
||||
}
|
||||
x[0] = sign ? -1.0f : 1.0f;
|
||||
x = Y;
|
||||
}
|
||||
if (lowband_out)
|
||||
lowband_out[0] = X[0];
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (!dualstereo && level == 0) {
|
||||
int tf_change = s->tf_change[band];
|
||||
int k;
|
||||
if (tf_change > 0)
|
||||
recombine = tf_change;
|
||||
/* Band recombining to increase frequency resolution */
|
||||
|
||||
if (lowband &&
|
||||
(recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
|
||||
int j;
|
||||
for (j = 0; j < N; j++)
|
||||
lowband_scratch[j] = lowband[j];
|
||||
lowband = lowband_scratch;
|
||||
}
|
||||
|
||||
for (k = 0; k < recombine; k++) {
|
||||
if (lowband)
|
||||
celt_haar1(lowband, N >> k, 1 << k);
|
||||
fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2;
|
||||
}
|
||||
blocks >>= recombine;
|
||||
N_B <<= recombine;
|
||||
|
||||
/* Increasing the time resolution */
|
||||
while ((N_B & 1) == 0 && tf_change < 0) {
|
||||
if (lowband)
|
||||
celt_haar1(lowband, N_B, blocks);
|
||||
fill |= fill << blocks;
|
||||
blocks <<= 1;
|
||||
N_B >>= 1;
|
||||
time_divide++;
|
||||
tf_change++;
|
||||
}
|
||||
B0 = blocks;
|
||||
N_B0 = N_B;
|
||||
|
||||
/* Reorganize the samples in time order instead of frequency order */
|
||||
if (B0 > 1 && lowband)
|
||||
celt_deinterleave_hadamard(s->scratch, lowband, N_B >> recombine,
|
||||
B0 << recombine, longblocks);
|
||||
}
|
||||
|
||||
/* If we need 1.5 more bit than we can produce, split the band in two. */
|
||||
cache = ff_celt_cache_bits +
|
||||
ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
|
||||
if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
|
||||
N >>= 1;
|
||||
Y = X + N;
|
||||
split = 1;
|
||||
duration -= 1;
|
||||
if (blocks == 1)
|
||||
fill = (fill & 1) | (fill << 1);
|
||||
blocks = (blocks + 1) >> 1;
|
||||
}
|
||||
|
||||
if (split) {
|
||||
int qn;
|
||||
int itheta = 0;
|
||||
int mbits, sbits, delta;
|
||||
int qalloc;
|
||||
int pulse_cap;
|
||||
int offset;
|
||||
int orig_fill;
|
||||
int tell;
|
||||
|
||||
/* Decide on the resolution to give to the split parameter theta */
|
||||
pulse_cap = ff_celt_log_freq_range[band] + duration * 8;
|
||||
offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
|
||||
CELT_QTHETA_OFFSET);
|
||||
qn = (dualstereo && band >= s->intensitystereo) ? 1 :
|
||||
celt_compute_qn(N, b, offset, pulse_cap, dualstereo);
|
||||
tell = opus_rc_tell_frac(rc);
|
||||
if (qn != 1) {
|
||||
/* Entropy coding of the angle. We use a uniform pdf for the
|
||||
time split, a step for stereo, and a triangular one for the rest. */
|
||||
if (dualstereo && N > 2)
|
||||
itheta = ff_opus_rc_dec_uint_step(rc, qn/2);
|
||||
else if (dualstereo || B0 > 1)
|
||||
itheta = ff_opus_rc_dec_uint(rc, qn+1);
|
||||
else
|
||||
itheta = ff_opus_rc_dec_uint_tri(rc, qn);
|
||||
itheta = itheta * 16384 / qn;
|
||||
/* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
|
||||
Let's do that at higher complexity */
|
||||
} else if (dualstereo) {
|
||||
inv = (b > 2 << 3 && s->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0;
|
||||
itheta = 0;
|
||||
}
|
||||
qalloc = opus_rc_tell_frac(rc) - tell;
|
||||
b -= qalloc;
|
||||
|
||||
orig_fill = fill;
|
||||
if (itheta == 0) {
|
||||
imid = 32767;
|
||||
iside = 0;
|
||||
fill = av_mod_uintp2(fill, blocks);
|
||||
delta = -16384;
|
||||
} else if (itheta == 16384) {
|
||||
imid = 0;
|
||||
iside = 32767;
|
||||
fill &= ((1 << blocks) - 1) << blocks;
|
||||
delta = 16384;
|
||||
} else {
|
||||
imid = celt_cos(itheta);
|
||||
iside = celt_cos(16384-itheta);
|
||||
/* This is the mid vs side allocation that minimizes squared error
|
||||
in that band. */
|
||||
delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
|
||||
}
|
||||
|
||||
mid = imid / 32768.0f;
|
||||
side = iside / 32768.0f;
|
||||
|
||||
/* This is a special case for N=2 that only works for stereo and takes
|
||||
advantage of the fact that mid and side are orthogonal to encode
|
||||
the side with just one bit. */
|
||||
if (N == 2 && dualstereo) {
|
||||
int c;
|
||||
int sign = 0;
|
||||
float tmp;
|
||||
float *x2, *y2;
|
||||
mbits = b;
|
||||
/* Only need one bit for the side */
|
||||
sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
|
||||
mbits -= sbits;
|
||||
c = (itheta > 8192);
|
||||
s->remaining2 -= qalloc+sbits;
|
||||
|
||||
x2 = c ? Y : X;
|
||||
y2 = c ? X : Y;
|
||||
if (sbits)
|
||||
sign = ff_opus_rc_get_raw(rc, 1);
|
||||
sign = 1 - 2 * sign;
|
||||
/* We use orig_fill here because we want to fold the side, but if
|
||||
itheta==16384, we'll have cleared the low bits of fill. */
|
||||
cm = ff_celt_decode_band(s, rc, band, x2, NULL, N, mbits, blocks,
|
||||
lowband, duration, lowband_out, level, gain,
|
||||
lowband_scratch, orig_fill);
|
||||
/* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
|
||||
and there's no need to worry about mixing with the other channel. */
|
||||
y2[0] = -sign * x2[1];
|
||||
y2[1] = sign * x2[0];
|
||||
X[0] *= mid;
|
||||
X[1] *= mid;
|
||||
Y[0] *= side;
|
||||
Y[1] *= side;
|
||||
tmp = X[0];
|
||||
X[0] = tmp - Y[0];
|
||||
Y[0] = tmp + Y[0];
|
||||
tmp = X[1];
|
||||
X[1] = tmp - Y[1];
|
||||
Y[1] = tmp + Y[1];
|
||||
} else {
|
||||
/* "Normal" split code */
|
||||
float *next_lowband2 = NULL;
|
||||
float *next_lowband_out1 = NULL;
|
||||
int next_level = 0;
|
||||
int rebalance;
|
||||
|
||||
/* Give more bits to low-energy MDCTs than they would
|
||||
* otherwise deserve */
|
||||
if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) {
|
||||
if (itheta > 8192)
|
||||
/* Rough approximation for pre-echo masking */
|
||||
delta -= delta >> (4 - duration);
|
||||
else
|
||||
/* Corresponds to a forward-masking slope of
|
||||
* 1.5 dB per 10 ms */
|
||||
delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
|
||||
}
|
||||
mbits = av_clip((b - delta) / 2, 0, b);
|
||||
sbits = b - mbits;
|
||||
s->remaining2 -= qalloc;
|
||||
|
||||
if (lowband && !dualstereo)
|
||||
next_lowband2 = lowband + N; /* >32-bit split case */
|
||||
|
||||
/* Only stereo needs to pass on lowband_out.
|
||||
* Otherwise, it's handled at the end */
|
||||
if (dualstereo)
|
||||
next_lowband_out1 = lowband_out;
|
||||
else
|
||||
next_level = level + 1;
|
||||
|
||||
rebalance = s->remaining2;
|
||||
if (mbits >= sbits) {
|
||||
/* In stereo mode, we do not apply a scaling to the mid
|
||||
* because we need the normalized mid for folding later */
|
||||
cm = ff_celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
|
||||
lowband, duration, next_lowband_out1,
|
||||
next_level, dualstereo ? 1.0f : (gain * mid),
|
||||
lowband_scratch, fill);
|
||||
|
||||
rebalance = mbits - (rebalance - s->remaining2);
|
||||
if (rebalance > 3 << 3 && itheta != 0)
|
||||
sbits += rebalance - (3 << 3);
|
||||
|
||||
/* For a stereo split, the high bits of fill are always zero,
|
||||
* so no folding will be done to the side. */
|
||||
cm |= ff_celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
|
||||
next_lowband2, duration, NULL,
|
||||
next_level, gain * side, NULL,
|
||||
fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
|
||||
} else {
|
||||
/* For a stereo split, the high bits of fill are always zero,
|
||||
* so no folding will be done to the side. */
|
||||
cm = ff_celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
|
||||
next_lowband2, duration, NULL,
|
||||
next_level, gain * side, NULL,
|
||||
fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
|
||||
|
||||
rebalance = sbits - (rebalance - s->remaining2);
|
||||
if (rebalance > 3 << 3 && itheta != 16384)
|
||||
mbits += rebalance - (3 << 3);
|
||||
|
||||
/* In stereo mode, we do not apply a scaling to the mid because
|
||||
* we need the normalized mid for folding later */
|
||||
cm |= ff_celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
|
||||
lowband, duration, next_lowband_out1,
|
||||
next_level, dualstereo ? 1.0f : (gain * mid),
|
||||
lowband_scratch, fill);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* This is the basic no-split case */
|
||||
uint32_t q = celt_bits2pulses(cache, b);
|
||||
uint32_t curr_bits = celt_pulses2bits(cache, q);
|
||||
s->remaining2 -= curr_bits;
|
||||
|
||||
/* Ensures we can never bust the budget */
|
||||
while (s->remaining2 < 0 && q > 0) {
|
||||
s->remaining2 += curr_bits;
|
||||
curr_bits = celt_pulses2bits(cache, --q);
|
||||
s->remaining2 -= curr_bits;
|
||||
}
|
||||
|
||||
if (q != 0) {
|
||||
/* Finally do the actual quantization */
|
||||
cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
|
||||
s->spread, blocks, gain);
|
||||
} else {
|
||||
/* If there's no pulse, fill the band anyway */
|
||||
int j;
|
||||
uint32_t cm_mask = (1 << blocks) - 1;
|
||||
fill &= cm_mask;
|
||||
if (!fill) {
|
||||
for (j = 0; j < N; j++)
|
||||
X[j] = 0.0f;
|
||||
} else {
|
||||
if (!lowband) {
|
||||
/* Noise */
|
||||
for (j = 0; j < N; j++)
|
||||
X[j] = (((int32_t)celt_rng(s)) >> 20);
|
||||
cm = cm_mask;
|
||||
} else {
|
||||
/* Folded spectrum */
|
||||
for (j = 0; j < N; j++) {
|
||||
/* About 48 dB below the "normal" folding level */
|
||||
X[j] = lowband[j] + (((celt_rng(s)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
|
||||
}
|
||||
cm = fill;
|
||||
}
|
||||
celt_renormalize_vector(X, N, gain);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* This code is used by the decoder and by the resynthesis-enabled encoder */
|
||||
if (dualstereo) {
|
||||
int j;
|
||||
if (N != 2)
|
||||
celt_stereo_merge(X, Y, mid, N);
|
||||
if (inv) {
|
||||
for (j = 0; j < N; j++)
|
||||
Y[j] *= -1;
|
||||
}
|
||||
} else if (level == 0) {
|
||||
int k;
|
||||
|
||||
/* Undo the sample reorganization going from time order to frequency order */
|
||||
if (B0 > 1)
|
||||
celt_interleave_hadamard(s->scratch, X, N_B>>recombine,
|
||||
B0<<recombine, longblocks);
|
||||
|
||||
/* Undo time-freq changes that we did earlier */
|
||||
N_B = N_B0;
|
||||
blocks = B0;
|
||||
for (k = 0; k < time_divide; k++) {
|
||||
blocks >>= 1;
|
||||
N_B <<= 1;
|
||||
cm |= cm >> blocks;
|
||||
celt_haar1(X, N_B, blocks);
|
||||
}
|
||||
|
||||
for (k = 0; k < recombine; k++) {
|
||||
cm = ff_celt_bit_deinterleave[cm];
|
||||
celt_haar1(X, N0>>k, 1<<k);
|
||||
}
|
||||
blocks <<= recombine;
|
||||
|
||||
/* Scale output for later folding */
|
||||
if (lowband_out) {
|
||||
int j;
|
||||
float n = sqrtf(N0);
|
||||
for (j = 0; j < N0; j++)
|
||||
lowband_out[j] = n * X[j];
|
||||
}
|
||||
cm = av_mod_uintp2(cm, blocks);
|
||||
}
|
||||
return cm;
|
||||
}
|
35
libavcodec/opus_pvq.h
Normal file
35
libavcodec/opus_pvq.h
Normal file
@ -0,0 +1,35 @@
|
||||
/*
|
||||
* Copyright (c) 2012 Andrew D'Addesio
|
||||
* Copyright (c) 2013-2014 Mozilla Corporation
|
||||
* Copyright (c) 2016 Rostislav Pehlivanov <atomnuker@gmail.com>
|
||||
*
|
||||
* This file is part of FFmpeg.
|
||||
*
|
||||
* FFmpeg is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* FFmpeg is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with FFmpeg; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#ifndef AVCODEC_OPUS_PVQ_H
|
||||
#define AVCODEC_OPUS_PVQ_H
|
||||
|
||||
#include "opus.h"
|
||||
#include "opus_celt.h"
|
||||
|
||||
/* Decodes a band using PVQ */
|
||||
uint32_t ff_celt_decode_band(CeltContext *s, OpusRangeCoder *rc, const int band,
|
||||
float *X, float *Y, int N, int b, uint32_t blocks,
|
||||
float *lowband, int duration, float *lowband_out, int level,
|
||||
float gain, float *lowband_scratch, int fill);
|
||||
|
||||
#endif /* AVCODEC_OPUS_PVQ_H */
|
Loading…
Reference in New Issue
Block a user