mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-13 21:28:01 +02:00
dnn_backend_native.c: refine code for fail case
This commit is contained in:
parent
c0974355c7
commit
fc932195ab
@ -126,26 +126,23 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
||||
int32_t layer;
|
||||
DNNLayerType layer_type;
|
||||
|
||||
model = av_malloc(sizeof(DNNModel));
|
||||
if (!model){
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){
|
||||
av_freep(&model);
|
||||
return NULL;
|
||||
}
|
||||
file_size = avio_size(model_file_context);
|
||||
|
||||
model = av_mallocz(sizeof(DNNModel));
|
||||
if (!model){
|
||||
goto fail;
|
||||
}
|
||||
|
||||
/**
|
||||
* check file header with string and version
|
||||
*/
|
||||
size = sizeof(header_expected);
|
||||
buf = av_malloc(size);
|
||||
if (!buf) {
|
||||
avio_closep(&model_file_context);
|
||||
av_freep(&model);
|
||||
return NULL;
|
||||
goto fail;
|
||||
}
|
||||
|
||||
// size - 1 to skip the ending '\0' which is not saved in file
|
||||
@ -153,18 +150,14 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
||||
dnn_size = size - 1;
|
||||
if (strncmp(buf, header_expected, size) != 0) {
|
||||
av_freep(&buf);
|
||||
avio_closep(&model_file_context);
|
||||
av_freep(&model);
|
||||
return NULL;
|
||||
goto fail;
|
||||
}
|
||||
av_freep(&buf);
|
||||
|
||||
version = (int32_t)avio_rl32(model_file_context);
|
||||
dnn_size += 4;
|
||||
if (version != major_version_expected) {
|
||||
avio_closep(&model_file_context);
|
||||
av_freep(&model);
|
||||
return NULL;
|
||||
goto fail;
|
||||
}
|
||||
|
||||
// currently no need to check minor version
|
||||
@ -174,9 +167,7 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
||||
|
||||
network = av_mallocz(sizeof(ConvolutionalNetwork));
|
||||
if (!network){
|
||||
avio_closep(&model_file_context);
|
||||
av_freep(&model);
|
||||
return NULL;
|
||||
goto fail;
|
||||
}
|
||||
model->model = (void *)network;
|
||||
|
||||
@ -188,16 +179,12 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
||||
|
||||
network->layers = av_mallocz(network->layers_num * sizeof(Layer));
|
||||
if (!network->layers){
|
||||
avio_closep(&model_file_context);
|
||||
ff_dnn_free_model_native(&model);
|
||||
return NULL;
|
||||
goto fail;
|
||||
}
|
||||
|
||||
network->operands = av_mallocz(network->operands_num * sizeof(DnnOperand));
|
||||
if (!network->operands){
|
||||
avio_closep(&model_file_context);
|
||||
ff_dnn_free_model_native(&model);
|
||||
return NULL;
|
||||
goto fail;
|
||||
}
|
||||
|
||||
for (layer = 0; layer < network->layers_num; ++layer){
|
||||
@ -205,17 +192,13 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
||||
dnn_size += 4;
|
||||
|
||||
if (layer_type >= DLT_COUNT) {
|
||||
avio_closep(&model_file_context);
|
||||
ff_dnn_free_model_native(&model);
|
||||
return NULL;
|
||||
goto fail;
|
||||
}
|
||||
|
||||
network->layers[layer].type = layer_type;
|
||||
parsed_size = layer_funcs[layer_type].pf_load(&network->layers[layer], model_file_context, file_size);
|
||||
if (!parsed_size) {
|
||||
avio_closep(&model_file_context);
|
||||
ff_dnn_free_model_native(&model);
|
||||
return NULL;
|
||||
goto fail;
|
||||
}
|
||||
dnn_size += parsed_size;
|
||||
}
|
||||
@ -258,6 +241,11 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
||||
model->get_input = &get_input_native;
|
||||
|
||||
return model;
|
||||
|
||||
fail:
|
||||
ff_dnn_free_model_native(&model);
|
||||
avio_closep(&model_file_context);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *outputs, uint32_t nb_output)
|
||||
@ -314,23 +302,29 @@ void ff_dnn_free_model_native(DNNModel **model)
|
||||
|
||||
if (*model)
|
||||
{
|
||||
network = (ConvolutionalNetwork *)(*model)->model;
|
||||
for (layer = 0; layer < network->layers_num; ++layer){
|
||||
if (network->layers[layer].type == DLT_CONV2D){
|
||||
conv_params = (ConvolutionalParams *)network->layers[layer].params;
|
||||
av_freep(&conv_params->kernel);
|
||||
av_freep(&conv_params->biases);
|
||||
if ((*model)->model) {
|
||||
network = (ConvolutionalNetwork *)(*model)->model;
|
||||
if (network->layers) {
|
||||
for (layer = 0; layer < network->layers_num; ++layer){
|
||||
if (network->layers[layer].type == DLT_CONV2D){
|
||||
conv_params = (ConvolutionalParams *)network->layers[layer].params;
|
||||
av_freep(&conv_params->kernel);
|
||||
av_freep(&conv_params->biases);
|
||||
}
|
||||
av_freep(&network->layers[layer].params);
|
||||
}
|
||||
av_freep(&network->layers);
|
||||
}
|
||||
av_freep(&network->layers[layer].params);
|
||||
|
||||
if (network->operands) {
|
||||
for (uint32_t operand = 0; operand < network->operands_num; ++operand)
|
||||
av_freep(&network->operands[operand].data);
|
||||
av_freep(&network->operands);
|
||||
}
|
||||
|
||||
av_freep(&network->output_indexes);
|
||||
av_freep(&network);
|
||||
}
|
||||
av_freep(&network->layers);
|
||||
|
||||
for (uint32_t operand = 0; operand < network->operands_num; ++operand)
|
||||
av_freep(&network->operands[operand].data);
|
||||
av_freep(&network->operands);
|
||||
|
||||
av_freep(&network->output_indexes);
|
||||
av_freep(&network);
|
||||
av_freep(model);
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user