1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00

Cosmetics: Pretty print the AAC encoder.

Originally committed as revision 19376 to svn://svn.ffmpeg.org/ffmpeg/trunk
This commit is contained in:
Alex Converse 2009-07-08 20:36:45 +00:00
parent 78e65cd772
commit fd257dc4c0
6 changed files with 288 additions and 288 deletions

View File

@ -119,18 +119,18 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, const
int offs[4]; int offs[4];
#endif /* USE_REALLY_FULL_SEARCH */ #endif /* USE_REALLY_FULL_SEARCH */
if(!cb){ if (!cb) {
for(i = 0; i < size; i++) for (i = 0; i < size; i++)
cost += in[i]*in[i]*lambda; cost += in[i]*in[i]*lambda;
return cost; return cost;
} }
#ifndef USE_REALLY_FULL_SEARCH #ifndef USE_REALLY_FULL_SEARCH
offs[0] = 1; offs[0] = 1;
for(i = 1; i < dim; i++) for (i = 1; i < dim; i++)
offs[i] = offs[i-1]*range; offs[i] = offs[i-1]*range;
quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval); quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
#endif /* USE_REALLY_FULL_SEARCH */ #endif /* USE_REALLY_FULL_SEARCH */
for(i = 0; i < size; i += dim){ for (i = 0; i < size; i += dim) {
float mincost; float mincost;
int minidx = 0; int minidx = 0;
int minbits = 0; int minbits = 0;
@ -138,69 +138,69 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, const
#ifndef USE_REALLY_FULL_SEARCH #ifndef USE_REALLY_FULL_SEARCH
int (*quants)[2] = &s->qcoefs[i]; int (*quants)[2] = &s->qcoefs[i];
mincost = 0.0f; mincost = 0.0f;
for(j = 0; j < dim; j++){ for (j = 0; j < dim; j++) {
mincost += in[i+j]*in[i+j]*lambda; mincost += in[i+j]*in[i+j]*lambda;
} }
minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
minbits = ff_aac_spectral_bits[cb-1][minidx]; minbits = ff_aac_spectral_bits[cb-1][minidx];
mincost += minbits; mincost += minbits;
for(j = 0; j < (1<<dim); j++){ for (j = 0; j < (1<<dim); j++) {
float rd = 0.0f; float rd = 0.0f;
int curbits; int curbits;
int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
int same = 0; int same = 0;
for(k = 0; k < dim; k++){ for (k = 0; k < dim; k++) {
if((j & (1 << k)) && quants[k][0] == quants[k][1]){ if ((j & (1 << k)) && quants[k][0] == quants[k][1]) {
same = 1; same = 1;
break; break;
} }
} }
if(same) if (same)
continue; continue;
for(k = 0; k < dim; k++) for (k = 0; k < dim; k++)
curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k]; curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
curbits = ff_aac_spectral_bits[cb-1][curidx]; curbits = ff_aac_spectral_bits[cb-1][curidx];
vec = &ff_aac_codebook_vectors[cb-1][curidx*dim]; vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
#else #else
mincost = INFINITY; mincost = INFINITY;
vec = ff_aac_codebook_vectors[cb-1]; vec = ff_aac_codebook_vectors[cb-1];
for(j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim){ for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) {
float rd = 0.0f; float rd = 0.0f;
int curbits = ff_aac_spectral_bits[cb-1][j]; int curbits = ff_aac_spectral_bits[cb-1][j];
#endif /* USE_REALLY_FULL_SEARCH */ #endif /* USE_REALLY_FULL_SEARCH */
if(IS_CODEBOOK_UNSIGNED(cb)){ if (IS_CODEBOOK_UNSIGNED(cb)) {
for(k = 0; k < dim; k++){ for (k = 0; k < dim; k++) {
float t = fabsf(in[i+k]); float t = fabsf(in[i+k]);
float di; float di;
//do not code with escape sequence small values //do not code with escape sequence small values
if(vec[k] == 64.0f && t < 39.0f*IQ){ if (vec[k] == 64.0f && t < 39.0f*IQ) {
rd = INFINITY; rd = INFINITY;
break; break;
} }
if(vec[k] == 64.0f){//FIXME: slow if (vec[k] == 64.0f) {//FIXME: slow
if (t >= CLIPPED_ESCAPE) { if (t >= CLIPPED_ESCAPE) {
di = t - CLIPPED_ESCAPE; di = t - CLIPPED_ESCAPE;
curbits += 21; curbits += 21;
}else{ } else {
int c = av_clip(quant(t, Q), 0, 8191); int c = av_clip(quant(t, Q), 0, 8191);
di = t - c*cbrt(c)*IQ; di = t - c*cbrt(c)*IQ;
curbits += av_log2(c)*2 - 4 + 1; curbits += av_log2(c)*2 - 4 + 1;
} }
}else{ } else {
di = t - vec[k]*IQ; di = t - vec[k]*IQ;
} }
if(vec[k] != 0.0f) if (vec[k] != 0.0f)
curbits++; curbits++;
rd += di*di*lambda; rd += di*di*lambda;
} }
}else{ } else {
for(k = 0; k < dim; k++){ for (k = 0; k < dim; k++) {
float di = in[i+k] - vec[k]*IQ; float di = in[i+k] - vec[k]*IQ;
rd += di*di*lambda; rd += di*di*lambda;
} }
} }
rd += curbits; rd += curbits;
if(rd < mincost){ if (rd < mincost) {
mincost = rd; mincost = rd;
minidx = j; minidx = j;
minbits = curbits; minbits = curbits;
@ -208,11 +208,11 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, const
} }
cost += mincost; cost += mincost;
resbits += minbits; resbits += minbits;
if(cost >= uplim) if (cost >= uplim)
return uplim; return uplim;
} }
if(bits) if (bits)
*bits = resbits; *bits = resbits;
return cost; return cost;
} }
@ -234,17 +234,17 @@ static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
#endif /* USE_REALLY_FULL_SEARCH */ #endif /* USE_REALLY_FULL_SEARCH */
//START_TIMER //START_TIMER
if(!cb) if (!cb)
return; return;
#ifndef USE_REALLY_FULL_SEARCH #ifndef USE_REALLY_FULL_SEARCH
offs[0] = 1; offs[0] = 1;
for(i = 1; i < dim; i++) for (i = 1; i < dim; i++)
offs[i] = offs[i-1]*range; offs[i] = offs[i-1]*range;
abs_pow34_v(scaled, in, size); abs_pow34_v(scaled, in, size);
quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval); quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
#endif /* USE_REALLY_FULL_SEARCH */ #endif /* USE_REALLY_FULL_SEARCH */
for(i = 0; i < size; i += dim){ for (i = 0; i < size; i += dim) {
float mincost; float mincost;
int minidx = 0; int minidx = 0;
int minbits = 0; int minbits = 0;
@ -252,83 +252,83 @@ static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
#ifndef USE_REALLY_FULL_SEARCH #ifndef USE_REALLY_FULL_SEARCH
int (*quants)[2] = &s->qcoefs[i]; int (*quants)[2] = &s->qcoefs[i];
mincost = 0.0f; mincost = 0.0f;
for(j = 0; j < dim; j++){ for (j = 0; j < dim; j++) {
mincost += in[i+j]*in[i+j]*lambda; mincost += in[i+j]*in[i+j]*lambda;
} }
minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
minbits = ff_aac_spectral_bits[cb-1][minidx]; minbits = ff_aac_spectral_bits[cb-1][minidx];
mincost += minbits; mincost += minbits;
for(j = 0; j < (1<<dim); j++){ for (j = 0; j < (1<<dim); j++) {
float rd = 0.0f; float rd = 0.0f;
int curbits; int curbits;
int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
int same = 0; int same = 0;
for(k = 0; k < dim; k++){ for (k = 0; k < dim; k++) {
if((j & (1 << k)) && quants[k][0] == quants[k][1]){ if ((j & (1 << k)) && quants[k][0] == quants[k][1]) {
same = 1; same = 1;
break; break;
} }
} }
if(same) if (same)
continue; continue;
for(k = 0; k < dim; k++) for (k = 0; k < dim; k++)
curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k]; curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
curbits = ff_aac_spectral_bits[cb-1][curidx]; curbits = ff_aac_spectral_bits[cb-1][curidx];
vec = &ff_aac_codebook_vectors[cb-1][curidx*dim]; vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
#else #else
vec = ff_aac_codebook_vectors[cb-1]; vec = ff_aac_codebook_vectors[cb-1];
mincost = INFINITY; mincost = INFINITY;
for(j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim){ for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) {
float rd = 0.0f; float rd = 0.0f;
int curbits = ff_aac_spectral_bits[cb-1][j]; int curbits = ff_aac_spectral_bits[cb-1][j];
int curidx = j; int curidx = j;
#endif /* USE_REALLY_FULL_SEARCH */ #endif /* USE_REALLY_FULL_SEARCH */
if(IS_CODEBOOK_UNSIGNED(cb)){ if (IS_CODEBOOK_UNSIGNED(cb)) {
for(k = 0; k < dim; k++){ for (k = 0; k < dim; k++) {
float t = fabsf(in[i+k]); float t = fabsf(in[i+k]);
float di; float di;
//do not code with escape sequence small values //do not code with escape sequence small values
if(vec[k] == 64.0f && t < 39.0f*IQ){ if (vec[k] == 64.0f && t < 39.0f*IQ) {
rd = INFINITY; rd = INFINITY;
break; break;
} }
if(vec[k] == 64.0f){//FIXME: slow if (vec[k] == 64.0f) {//FIXME: slow
if (t >= CLIPPED_ESCAPE) { if (t >= CLIPPED_ESCAPE) {
di = t - CLIPPED_ESCAPE; di = t - CLIPPED_ESCAPE;
curbits += 21; curbits += 21;
}else{ } else {
int c = av_clip(quant(t, Q), 0, 8191); int c = av_clip(quant(t, Q), 0, 8191);
di = t - c*cbrt(c)*IQ; di = t - c*cbrt(c)*IQ;
curbits += av_log2(c)*2 - 4 + 1; curbits += av_log2(c)*2 - 4 + 1;
} }
}else{ } else {
di = t - vec[k]*IQ; di = t - vec[k]*IQ;
} }
if(vec[k] != 0.0f) if (vec[k] != 0.0f)
curbits++; curbits++;
rd += di*di*lambda; rd += di*di*lambda;
} }
}else{ } else {
for(k = 0; k < dim; k++){ for (k = 0; k < dim; k++) {
float di = in[i+k] - vec[k]*IQ; float di = in[i+k] - vec[k]*IQ;
rd += di*di*lambda; rd += di*di*lambda;
} }
} }
rd += curbits; rd += curbits;
if(rd < mincost){ if (rd < mincost) {
mincost = rd; mincost = rd;
minidx = curidx; minidx = curidx;
minbits = curbits; minbits = curbits;
} }
} }
put_bits(pb, ff_aac_spectral_bits[cb-1][minidx], ff_aac_spectral_codes[cb-1][minidx]); put_bits(pb, ff_aac_spectral_bits[cb-1][minidx], ff_aac_spectral_codes[cb-1][minidx]);
if(IS_CODEBOOK_UNSIGNED(cb)) if (IS_CODEBOOK_UNSIGNED(cb))
for(j = 0; j < dim; j++) for (j = 0; j < dim; j++)
if(ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f) if (ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f)
put_bits(pb, 1, in[i+j] < 0.0f); put_bits(pb, 1, in[i+j] < 0.0f);
if(cb == ESC_BT){ if (cb == ESC_BT) {
for(j = 0; j < 2; j++){ for (j = 0; j < 2; j++) {
if(ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f){ if (ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f) {
int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191); int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
int len = av_log2(coef); int len = av_log2(coef);
@ -370,29 +370,29 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce
abs_pow34_v(s->scoefs, sce->coeffs, 1024); abs_pow34_v(s->scoefs, sce->coeffs, 1024);
start = win*128; start = win*128;
for(cb = 0; cb < 12; cb++){ for (cb = 0; cb < 12; cb++) {
path[0][cb].cost = 0.0f; path[0][cb].cost = 0.0f;
path[0][cb].prev_idx = -1; path[0][cb].prev_idx = -1;
path[0][cb].run = 0; path[0][cb].run = 0;
} }
for(swb = 0; swb < max_sfb; swb++){ for (swb = 0; swb < max_sfb; swb++) {
start2 = start; start2 = start;
size = sce->ics.swb_sizes[swb]; size = sce->ics.swb_sizes[swb];
if(sce->zeroes[win*16 + swb]){ if (sce->zeroes[win*16 + swb]) {
for(cb = 0; cb < 12; cb++){ for (cb = 0; cb < 12; cb++) {
path[swb+1][cb].prev_idx = cb; path[swb+1][cb].prev_idx = cb;
path[swb+1][cb].cost = path[swb][cb].cost; path[swb+1][cb].cost = path[swb][cb].cost;
path[swb+1][cb].run = path[swb][cb].run + 1; path[swb+1][cb].run = path[swb][cb].run + 1;
} }
}else{ } else {
float minrd = next_minrd; float minrd = next_minrd;
int mincb = next_mincb; int mincb = next_mincb;
next_minrd = INFINITY; next_minrd = INFINITY;
next_mincb = 0; next_mincb = 0;
for(cb = 0; cb < 12; cb++){ for (cb = 0; cb < 12; cb++) {
float cost_stay_here, cost_get_here; float cost_stay_here, cost_get_here;
float rd = 0.0f; float rd = 0.0f;
for(w = 0; w < group_len; w++){ for (w = 0; w < group_len; w++) {
FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb]; FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb];
rd += quantize_band_cost(s, sce->coeffs + start + w*128, rd += quantize_band_cost(s, sce->coeffs + start + w*128,
s->scoefs + start + w*128, size, s->scoefs + start + w*128, size,
@ -401,7 +401,7 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce
} }
cost_stay_here = path[swb][cb].cost + rd; cost_stay_here = path[swb][cb].cost + rd;
cost_get_here = minrd + rd + run_bits + 4; cost_get_here = minrd + rd + run_bits + 4;
if( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run] if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1]) != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
cost_stay_here += run_bits; cost_stay_here += run_bits;
if (cost_get_here < cost_stay_here) { if (cost_get_here < cost_stay_here) {
@ -425,12 +425,12 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce
//convert resulting path from backward-linked list //convert resulting path from backward-linked list
stack_len = 0; stack_len = 0;
idx = 0; idx = 0;
for(cb = 1; cb < 12; cb++){ for (cb = 1; cb < 12; cb++) {
if(path[max_sfb][cb].cost < path[max_sfb][idx].cost) if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
idx = cb; idx = cb;
} }
ppos = max_sfb; ppos = max_sfb;
while(ppos > 0){ while(ppos > 0) {
cb = idx; cb = idx;
stackrun[stack_len] = path[ppos][cb].run; stackrun[stack_len] = path[ppos][cb].run;
stackcb [stack_len] = cb; stackcb [stack_len] = cb;
@ -440,16 +440,16 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce
} }
//perform actual band info encoding //perform actual band info encoding
start = 0; start = 0;
for(i = stack_len - 1; i >= 0; i--){ for (i = stack_len - 1; i >= 0; i--) {
put_bits(&s->pb, 4, stackcb[i]); put_bits(&s->pb, 4, stackcb[i]);
count = stackrun[i]; count = stackrun[i];
memset(sce->zeroes + win*16 + start, !stackcb[i], count); memset(sce->zeroes + win*16 + start, !stackcb[i], count);
//XXX: memset when band_type is also uint8_t //XXX: memset when band_type is also uint8_t
for(j = 0; j < count; j++){ for (j = 0; j < count; j++) {
sce->band_type[win*16 + start] = stackcb[i]; sce->band_type[win*16 + start] = stackcb[i];
start++; start++;
} }
while(count >= run_esc){ while(count >= run_esc) {
put_bits(&s->pb, run_bits, run_esc); put_bits(&s->pb, run_bits, run_esc);
count -= run_esc; count -= run_esc;
} }
@ -482,13 +482,13 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
int minq; int minq;
float mincost; float mincost;
for(i = 0; i < 256; i++){ for (i = 0; i < 256; i++) {
paths[i].cost = 0.0f; paths[i].cost = 0.0f;
paths[i].prev = -1; paths[i].prev = -1;
paths[i].min_val = i; paths[i].min_val = i;
paths[i].max_val = i; paths[i].max_val = i;
} }
for(i = 256; i < 256*121; i++){ for (i = 256; i < 256*121; i++) {
paths[i].cost = INFINITY; paths[i].cost = INFINITY;
paths[i].prev = -2; paths[i].prev = -2;
paths[i].min_val = INT_MAX; paths[i].min_val = INT_MAX;
@ -496,9 +496,9 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
} }
idx = 256; idx = 256;
abs_pow34_v(s->scoefs, sce->coeffs, 1024); abs_pow34_v(s->scoefs, sce->coeffs, 1024);
for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128; start = w*128;
for(g = 0; g < sce->ics.num_swb; g++){ for (g = 0; g < sce->ics.num_swb; g++) {
const float *coefs = sce->coeffs + start; const float *coefs = sce->coeffs + start;
float qmin, qmax; float qmin, qmax;
int nz = 0; int nz = 0;
@ -506,53 +506,53 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
bandaddr[idx >> 8] = w*16+g; bandaddr[idx >> 8] = w*16+g;
qmin = INT_MAX; qmin = INT_MAX;
qmax = 0.0f; qmax = 0.0f;
for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
if(band->energy <= band->threshold || band->threshold == 0.0f){ if (band->energy <= band->threshold || band->threshold == 0.0f) {
sce->zeroes[(w+w2)*16+g] = 1; sce->zeroes[(w+w2)*16+g] = 1;
continue; continue;
} }
sce->zeroes[(w+w2)*16+g] = 0; sce->zeroes[(w+w2)*16+g] = 0;
nz = 1; nz = 1;
for(i = 0; i < sce->ics.swb_sizes[g]; i++){ for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
float t = fabsf(coefs[w2*128+i]); float t = fabsf(coefs[w2*128+i]);
if(t > 0.0f) qmin = fminf(qmin, t); if (t > 0.0f) qmin = fminf(qmin, t);
qmax = fmaxf(qmax, t); qmax = fmaxf(qmax, t);
} }
} }
if(nz){ if (nz) {
int minscale, maxscale; int minscale, maxscale;
float minrd = INFINITY; float minrd = INFINITY;
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512); minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
maxscale = av_clip_uint8(log2(qmax)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512); maxscale = av_clip_uint8(log2(qmax)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512);
for(q = minscale; q < maxscale; q++){ for (q = minscale; q < maxscale; q++) {
float dists[12], dist; float dists[12], dist;
memset(dists, 0, sizeof(dists)); memset(dists, 0, sizeof(dists));
for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
int cb; int cb;
for(cb = 0; cb <= ESC_BT; cb++){ for (cb = 0; cb <= ESC_BT; cb++) {
dists[cb] += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g], dists[cb] += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
q, cb, lambda / band->threshold, INFINITY, NULL); q, cb, lambda / band->threshold, INFINITY, NULL);
} }
} }
dist = dists[0]; dist = dists[0];
for(i = 1; i <= ESC_BT; i++) for (i = 1; i <= ESC_BT; i++)
dist = fminf(dist, dists[i]); dist = fminf(dist, dists[i]);
minrd = fminf(minrd, dist); minrd = fminf(minrd, dist);
for(i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++){ for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++) {
float cost; float cost;
int minv, maxv; int minv, maxv;
if(isinf(paths[idx - 256 + i].cost)) if (isinf(paths[idx - 256 + i].cost))
continue; continue;
cost = paths[idx - 256 + i].cost + dist cost = paths[idx - 256 + i].cost + dist
+ ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO]; + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
minv = FFMIN(paths[idx - 256 + i].min_val, q); minv = FFMIN(paths[idx - 256 + i].min_val, q);
maxv = FFMAX(paths[idx - 256 + i].max_val, q); maxv = FFMAX(paths[idx - 256 + i].max_val, q);
if(cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF){ if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) {
paths[idx + q].cost = cost; paths[idx + q].cost = cost;
paths[idx + q].prev = idx - 256 + i; paths[idx + q].prev = idx - 256 + i;
paths[idx + q].min_val = minv; paths[idx + q].min_val = minv;
@ -560,24 +560,24 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
} }
} }
} }
}else{ } else {
for(q = 0; q < 256; q++){ for (q = 0; q < 256; q++) {
if(!isinf(paths[idx - 256 + q].cost)){ if (!isinf(paths[idx - 256 + q].cost)) {
paths[idx + q].cost = paths[idx - 256 + q].cost + 1; paths[idx + q].cost = paths[idx - 256 + q].cost + 1;
paths[idx + q].prev = idx - 256 + q; paths[idx + q].prev = idx - 256 + q;
paths[idx + q].min_val = FFMIN(paths[idx - 256 + q].min_val, q); paths[idx + q].min_val = FFMIN(paths[idx - 256 + q].min_val, q);
paths[idx + q].max_val = FFMAX(paths[idx - 256 + q].max_val, q); paths[idx + q].max_val = FFMAX(paths[idx - 256 + q].max_val, q);
continue; continue;
} }
for(i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++){ for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++) {
float cost; float cost;
int minv, maxv; int minv, maxv;
if(isinf(paths[idx - 256 + i].cost)) if (isinf(paths[idx - 256 + i].cost))
continue; continue;
cost = paths[idx - 256 + i].cost + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO]; cost = paths[idx - 256 + i].cost + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
minv = FFMIN(paths[idx - 256 + i].min_val, q); minv = FFMIN(paths[idx - 256 + i].min_val, q);
maxv = FFMAX(paths[idx - 256 + i].max_val, q); maxv = FFMAX(paths[idx - 256 + i].max_val, q);
if(cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF){ if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) {
paths[idx + q].cost = cost; paths[idx + q].cost = cost;
paths[idx + q].prev = idx - 256 + i; paths[idx + q].prev = idx - 256 + i;
paths[idx + q].min_val = minv; paths[idx + q].min_val = minv;
@ -594,20 +594,20 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
idx -= 256; idx -= 256;
mincost = paths[idx].cost; mincost = paths[idx].cost;
minq = idx; minq = idx;
for(i = 1; i < 256; i++){ for (i = 1; i < 256; i++) {
if(paths[idx + i].cost < mincost){ if (paths[idx + i].cost < mincost) {
mincost = paths[idx + i].cost; mincost = paths[idx + i].cost;
minq = idx + i; minq = idx + i;
} }
} }
while(minq >= 256){ while(minq >= 256) {
sce->sf_idx[bandaddr[minq>>8]] = minq & 0xFF; sce->sf_idx[bandaddr[minq>>8]] = minq & 0xFF;
minq = paths[minq].prev; minq = paths[minq].prev;
} }
//set the same quantizers inside window groups //set the same quantizers inside window groups
for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
for(g = 0; g < sce->ics.num_swb; g++) for (g = 0; g < sce->ics.num_swb; g++)
for(w2 = 1; w2 < sce->ics.group_len[w]; w2++) for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g]; sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
} }
@ -628,14 +628,14 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *
//XXX: some heuristic to determine initial quantizers will reduce search time //XXX: some heuristic to determine initial quantizers will reduce search time
memset(dists, 0, sizeof(dists)); memset(dists, 0, sizeof(dists));
//determine zero bands and upper limits //determine zero bands and upper limits
for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for(g = 0; g < sce->ics.num_swb; g++){ for (g = 0; g < sce->ics.num_swb; g++) {
int nz = 0; int nz = 0;
float uplim = 0.0f; float uplim = 0.0f;
for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
uplim += band->threshold; uplim += band->threshold;
if(band->energy <= band->threshold || band->threshold == 0.0f){ if (band->energy <= band->threshold || band->threshold == 0.0f) {
sce->zeroes[(w+w2)*16+g] = 1; sce->zeroes[(w+w2)*16+g] = 1;
continue; continue;
} }
@ -643,14 +643,14 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *
} }
uplims[w*16+g] = uplim *512; uplims[w*16+g] = uplim *512;
sce->zeroes[w*16+g] = !nz; sce->zeroes[w*16+g] = !nz;
if(nz) if (nz)
minthr = fminf(minthr, uplim); minthr = fminf(minthr, uplim);
allz = FFMAX(allz, nz); allz = FFMAX(allz, nz);
} }
} }
for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for(g = 0; g < sce->ics.num_swb; g++){ for (g = 0; g < sce->ics.num_swb; g++) {
if(sce->zeroes[w*16+g]){ if (sce->zeroes[w*16+g]) {
sce->sf_idx[w*16+g] = SCALE_ONE_POS; sce->sf_idx[w*16+g] = SCALE_ONE_POS;
continue; continue;
} }
@ -658,7 +658,7 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *
} }
} }
if(!allz) if (!allz)
return; return;
abs_pow34_v(s->scoefs, sce->coeffs, 1024); abs_pow34_v(s->scoefs, sce->coeffs, 1024);
//perform two-loop search //perform two-loop search
@ -672,9 +672,9 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *
int prev = -1; int prev = -1;
tbits = 0; tbits = 0;
fflag = 0; fflag = 0;
for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128; start = w*128;
for(g = 0; g < sce->ics.num_swb; g++){ for (g = 0; g < sce->ics.num_swb; g++) {
const float *coefs = sce->coeffs + start; const float *coefs = sce->coeffs + start;
const float *scaled = s->scoefs + start; const float *scaled = s->scoefs + start;
int bits = 0; int bits = 0;
@ -682,13 +682,13 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *
float mindist = INFINITY; float mindist = INFINITY;
int minbits = 0; int minbits = 0;
if(sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218)
continue; continue;
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]); minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
for(cb = 0; cb <= ESC_BT; cb++){ for (cb = 0; cb <= ESC_BT; cb++) {
float dist = 0.0f; float dist = 0.0f;
int bb = 0; int bb = 0;
for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
int b; int b;
dist += quantize_band_cost(s, coefs + w2*128, dist += quantize_band_cost(s, coefs + w2*128,
scaled + w2*128, scaled + w2*128,
@ -700,14 +700,14 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *
&b); &b);
bb += b; bb += b;
} }
if(dist < mindist){ if (dist < mindist) {
mindist = dist; mindist = dist;
minbits = bb; minbits = bb;
} }
} }
dists[w*16+g] = mindist - minbits; dists[w*16+g] = mindist - minbits;
bits = minbits; bits = minbits;
if(prev != -1){ if (prev != -1) {
bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO]; bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
} }
tbits += bits; tbits += bits;
@ -715,36 +715,36 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *
prev = sce->sf_idx[w*16+g]; prev = sce->sf_idx[w*16+g];
} }
} }
if(tbits > destbits){ if (tbits > destbits) {
for(i = 0; i < 128; i++){ for (i = 0; i < 128; i++) {
if(sce->sf_idx[i] < 218 - qstep){ if (sce->sf_idx[i] < 218 - qstep) {
sce->sf_idx[i] += qstep; sce->sf_idx[i] += qstep;
} }
} }
}else{ } else {
for(i = 0; i < 128; i++){ for (i = 0; i < 128; i++) {
if(sce->sf_idx[i] > 60 - qstep){ if (sce->sf_idx[i] > 60 - qstep) {
sce->sf_idx[i] -= qstep; sce->sf_idx[i] -= qstep;
} }
} }
} }
qstep >>= 1; qstep >>= 1;
if(!qstep && tbits > destbits*1.02) if (!qstep && tbits > destbits*1.02)
qstep = 1; qstep = 1;
if(sce->sf_idx[0] >= 217)break; if (sce->sf_idx[0] >= 217)break;
}while(qstep); }while(qstep);
fflag = 0; fflag = 0;
minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF); minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128; start = w*128;
for(g = 0; g < sce->ics.num_swb; g++){ for (g = 0; g < sce->ics.num_swb; g++) {
int prevsc = sce->sf_idx[w*16+g]; int prevsc = sce->sf_idx[w*16+g];
if(dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60)
sce->sf_idx[w*16+g]--; sce->sf_idx[w*16+g]--;
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF); sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219); sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
if(sce->sf_idx[w*16+g] != prevsc) if (sce->sf_idx[w*16+g] != prevsc)
fflag = 1; fflag = 1;
} }
} }
@ -761,29 +761,29 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda; float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
int last = 0, lastband = 0, curband = 0; int last = 0, lastband = 0, curband = 0;
float avg_energy = 0.0; float avg_energy = 0.0;
if(sce->ics.num_windows == 1){ if (sce->ics.num_windows == 1) {
start = 0; start = 0;
for(i = 0; i < 1024; i++){ for (i = 0; i < 1024; i++) {
if(i - start >= sce->ics.swb_sizes[curband]){ if (i - start >= sce->ics.swb_sizes[curband]) {
start += sce->ics.swb_sizes[curband]; start += sce->ics.swb_sizes[curband];
curband++; curband++;
} }
if(sce->coeffs[i]){ if (sce->coeffs[i]) {
avg_energy += sce->coeffs[i] * sce->coeffs[i]; avg_energy += sce->coeffs[i] * sce->coeffs[i];
last = i; last = i;
lastband = curband; lastband = curband;
} }
} }
}else{ } else {
for(w = 0; w < 8; w++){ for (w = 0; w < 8; w++) {
const float *coeffs = sce->coeffs + w*128; const float *coeffs = sce->coeffs + w*128;
start = 0; start = 0;
for(i = 0; i < 128; i++){ for (i = 0; i < 128; i++) {
if(i - start >= sce->ics.swb_sizes[curband]){ if (i - start >= sce->ics.swb_sizes[curband]) {
start += sce->ics.swb_sizes[curband]; start += sce->ics.swb_sizes[curband];
curband++; curband++;
} }
if(coeffs[i]){ if (coeffs[i]) {
avg_energy += coeffs[i] * coeffs[i]; avg_energy += coeffs[i] * coeffs[i];
last = FFMAX(last, i); last = FFMAX(last, i);
lastband = FFMAX(lastband, curband); lastband = FFMAX(lastband, curband);
@ -793,41 +793,41 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
} }
last++; last++;
avg_energy /= last; avg_energy /= last;
if(avg_energy == 0.0f){ if (avg_energy == 0.0f) {
for(i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++) for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
sce->sf_idx[i] = SCALE_ONE_POS; sce->sf_idx[i] = SCALE_ONE_POS;
return; return;
} }
for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128; start = w*128;
for(g = 0; g < sce->ics.num_swb; g++){ for (g = 0; g < sce->ics.num_swb; g++) {
float *coefs = sce->coeffs + start; float *coefs = sce->coeffs + start;
const int size = sce->ics.swb_sizes[g]; const int size = sce->ics.swb_sizes[g];
int start2 = start, end2 = start + size, peakpos = start; int start2 = start, end2 = start + size, peakpos = start;
float maxval = -1, thr = 0.0f, t; float maxval = -1, thr = 0.0f, t;
maxq[w*16+g] = 0.0f; maxq[w*16+g] = 0.0f;
if(g > lastband){ if (g > lastband) {
maxq[w*16+g] = 0.0f; maxq[w*16+g] = 0.0f;
start += size; start += size;
for(w2 = 0; w2 < sce->ics.group_len[w]; w2++) for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
memset(coefs + w2*128, 0, sizeof(coefs[0])*size); memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
continue; continue;
} }
for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
for(i = 0; i < size; i++){ for (i = 0; i < size; i++) {
float t = coefs[w2*128+i]*coefs[w2*128+i]; float t = coefs[w2*128+i]*coefs[w2*128+i];
maxq[w*16+g] = fmaxf(maxq[w*16+g], fabsf(coefs[w2*128 + i])); maxq[w*16+g] = fmaxf(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
thr += t; thr += t;
if(sce->ics.num_windows == 1 && maxval < t){ if (sce->ics.num_windows == 1 && maxval < t) {
maxval = t; maxval = t;
peakpos = start+i; peakpos = start+i;
} }
} }
} }
if(sce->ics.num_windows == 1){ if (sce->ics.num_windows == 1) {
start2 = FFMAX(peakpos - 2, start2); start2 = FFMAX(peakpos - 2, start2);
end2 = FFMIN(peakpos + 3, end2); end2 = FFMIN(peakpos + 3, end2);
}else{ } else {
start2 -= start; start2 -= start;
end2 -= start; end2 -= start;
} }
@ -839,16 +839,16 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
} }
memset(sce->sf_idx, 0, sizeof(sce->sf_idx)); memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
abs_pow34_v(s->scoefs, sce->coeffs, 1024); abs_pow34_v(s->scoefs, sce->coeffs, 1024);
for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128; start = w*128;
for(g = 0; g < sce->ics.num_swb; g++){ for (g = 0; g < sce->ics.num_swb; g++) {
const float *coefs = sce->coeffs + start; const float *coefs = sce->coeffs + start;
const float *scaled = s->scoefs + start; const float *scaled = s->scoefs + start;
const int size = sce->ics.swb_sizes[g]; const int size = sce->ics.swb_sizes[g];
int scf, prev_scf, step; int scf, prev_scf, step;
int min_scf = 0, max_scf = 255; int min_scf = 0, max_scf = 255;
float curdiff; float curdiff;
if(maxq[w*16+g] < 21.544){ if (maxq[w*16+g] < 21.544) {
sce->zeroes[w*16+g] = 1; sce->zeroes[w*16+g] = 1;
start += size; start += size;
continue; continue;
@ -856,11 +856,11 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
sce->zeroes[w*16+g] = 0; sce->zeroes[w*16+g] = 0;
scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218); scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218);
step = 16; step = 16;
for(;;){ for (;;) {
float dist = 0.0f; float dist = 0.0f;
int quant_max; int quant_max;
for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
int b; int b;
dist += quantize_band_cost(s, coefs + w2*128, dist += quantize_band_cost(s, coefs + w2*128,
scaled + w2*128, scaled + w2*128,
@ -874,24 +874,24 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
} }
dist *= 1.0f/512.0f; dist *= 1.0f/512.0f;
quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]); quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]);
if(quant_max >= 8191){ // too much, return to the previous quantizer if (quant_max >= 8191) { // too much, return to the previous quantizer
sce->sf_idx[w*16+g] = prev_scf; sce->sf_idx[w*16+g] = prev_scf;
break; break;
} }
prev_scf = scf; prev_scf = scf;
curdiff = fabsf(dist - uplim[w*16+g]); curdiff = fabsf(dist - uplim[w*16+g]);
if(curdiff == 0.0f) if (curdiff == 0.0f)
step = 0; step = 0;
else else
step = fabsf(log2(curdiff)); step = fabsf(log2(curdiff));
if(dist > uplim[w*16+g]) if (dist > uplim[w*16+g])
step = -step; step = -step;
if(FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)){ if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
sce->sf_idx[w*16+g] = scf; sce->sf_idx[w*16+g] = scf;
break; break;
} }
scf += step; scf += step;
if(step > 0) if (step > 0)
min_scf = scf; min_scf = scf;
else else
max_scf = scf; max_scf = scf;
@ -900,17 +900,17 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
} }
} }
minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX; minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
for(i = 1; i < 128; i++){ for (i = 1; i < 128; i++) {
if(!sce->sf_idx[i]) if (!sce->sf_idx[i])
sce->sf_idx[i] = sce->sf_idx[i-1]; sce->sf_idx[i] = sce->sf_idx[i-1];
else else
minq = FFMIN(minq, sce->sf_idx[i]); minq = FFMIN(minq, sce->sf_idx[i]);
} }
if(minq == INT_MAX) minq = 0; if (minq == INT_MAX) minq = 0;
minq = FFMIN(minq, SCALE_MAX_POS); minq = FFMIN(minq, SCALE_MAX_POS);
maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS); maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
for(i = 126; i >= 0; i--){ for (i = 126; i >= 0; i--) {
if(!sce->sf_idx[i]) if (!sce->sf_idx[i])
sce->sf_idx[i] = sce->sf_idx[i+1]; sce->sf_idx[i] = sce->sf_idx[i+1];
sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf); sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
} }
@ -923,15 +923,15 @@ static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
int minq = 255; int minq = 255;
memset(sce->sf_idx, 0, sizeof(sce->sf_idx)); memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128; start = w*128;
for(g = 0; g < sce->ics.num_swb; g++){ for (g = 0; g < sce->ics.num_swb; g++) {
for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
if(band->energy <= band->threshold){ if (band->energy <= band->threshold) {
sce->sf_idx[(w+w2)*16+g] = 218; sce->sf_idx[(w+w2)*16+g] = 218;
sce->zeroes[(w+w2)*16+g] = 1; sce->zeroes[(w+w2)*16+g] = 1;
}else{ } else {
sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218); sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218);
sce->zeroes[(w+w2)*16+g] = 0; sce->zeroes[(w+w2)*16+g] = 0;
} }
@ -939,13 +939,13 @@ static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
} }
} }
} }
for(i = 0; i < 128; i++){ for (i = 0; i < 128; i++) {
sce->sf_idx[i] = 140;//av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1); sce->sf_idx[i] = 140;//av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
} }
//set the same quantizers inside window groups //set the same quantizers inside window groups
for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
for(g = 0; g < sce->ics.num_swb; g++) for (g = 0; g < sce->ics.num_swb; g++)
for(w2 = 1; w2 < sce->ics.group_len[w]; w2++) for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g]; sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
} }
@ -956,18 +956,18 @@ static void search_for_ms(AACEncContext *s, ChannelElement *cpe, const float lam
float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3; float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
SingleChannelElement *sce0 = &cpe->ch[0]; SingleChannelElement *sce0 = &cpe->ch[0];
SingleChannelElement *sce1 = &cpe->ch[1]; SingleChannelElement *sce1 = &cpe->ch[1];
if(!cpe->common_window) if (!cpe->common_window)
return; return;
for(w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]){ for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
for(g = 0; g < sce0->ics.num_swb; g++){ for (g = 0; g < sce0->ics.num_swb; g++) {
if(!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]){ if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
float dist1 = 0.0f, dist2 = 0.0f; float dist1 = 0.0f, dist2 = 0.0f;
for(w2 = 0; w2 < sce0->ics.group_len[w]; w2++){ for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g]; FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g];
FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g]; FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g];
float minthr = fminf(band0->threshold, band1->threshold); float minthr = fminf(band0->threshold, band1->threshold);
float maxthr = fmaxf(band0->threshold, band1->threshold); float maxthr = fmaxf(band0->threshold, band1->threshold);
for(i = 0; i < sce0->ics.swb_sizes[g]; i++){ for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
M[i] = (sce0->coeffs[start+w2*128+i] M[i] = (sce0->coeffs[start+w2*128+i]
+ sce1->coeffs[start+w2*128+i])*0.5; + sce1->coeffs[start+w2*128+i])*0.5;
S[i] = sce0->coeffs[start+w2*128+i] S[i] = sce0->coeffs[start+w2*128+i]

View File

@ -159,14 +159,14 @@ static av_cold int aac_encode_init(AVCodecContext *avctx)
avctx->frame_size = 1024; avctx->frame_size = 1024;
for(i = 0; i < 16; i++) for (i = 0; i < 16; i++)
if(avctx->sample_rate == ff_mpeg4audio_sample_rates[i]) if (avctx->sample_rate == ff_mpeg4audio_sample_rates[i])
break; break;
if(i == 16){ if (i == 16) {
av_log(avctx, AV_LOG_ERROR, "Unsupported sample rate %d\n", avctx->sample_rate); av_log(avctx, AV_LOG_ERROR, "Unsupported sample rate %d\n", avctx->sample_rate);
return -1; return -1;
} }
if(avctx->channels > 6){ if (avctx->channels > 6) {
av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %d\n", avctx->channels); av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %d\n", avctx->channels);
return -1; return -1;
} }
@ -218,35 +218,35 @@ static void apply_window_and_mdct(AVCodecContext *avctx, AACEncContext *s,
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) { if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
memcpy(s->output, sce->saved, sizeof(float)*1024); memcpy(s->output, sce->saved, sizeof(float)*1024);
if(sce->ics.window_sequence[0] == LONG_STOP_SEQUENCE){ if (sce->ics.window_sequence[0] == LONG_STOP_SEQUENCE) {
memset(s->output, 0, sizeof(s->output[0]) * 448); memset(s->output, 0, sizeof(s->output[0]) * 448);
for(i = 448; i < 576; i++) for (i = 448; i < 576; i++)
s->output[i] = sce->saved[i] * pwindow[i - 448]; s->output[i] = sce->saved[i] * pwindow[i - 448];
for(i = 576; i < 704; i++) for (i = 576; i < 704; i++)
s->output[i] = sce->saved[i]; s->output[i] = sce->saved[i];
} }
if(sce->ics.window_sequence[0] != LONG_START_SEQUENCE){ if (sce->ics.window_sequence[0] != LONG_START_SEQUENCE) {
j = channel; j = channel;
for (i = 0; i < 1024; i++, j += avctx->channels){ for (i = 0; i < 1024; i++, j += avctx->channels) {
s->output[i+1024] = audio[j] * lwindow[1024 - i - 1]; s->output[i+1024] = audio[j] * lwindow[1024 - i - 1];
sce->saved[i] = audio[j] * lwindow[i]; sce->saved[i] = audio[j] * lwindow[i];
} }
}else{ } else {
j = channel; j = channel;
for(i = 0; i < 448; i++, j += avctx->channels) for (i = 0; i < 448; i++, j += avctx->channels)
s->output[i+1024] = audio[j]; s->output[i+1024] = audio[j];
for(i = 448; i < 576; i++, j += avctx->channels) for (i = 448; i < 576; i++, j += avctx->channels)
s->output[i+1024] = audio[j] * swindow[576 - i - 1]; s->output[i+1024] = audio[j] * swindow[576 - i - 1];
memset(s->output+1024+576, 0, sizeof(s->output[0]) * 448); memset(s->output+1024+576, 0, sizeof(s->output[0]) * 448);
j = channel; j = channel;
for(i = 0; i < 1024; i++, j += avctx->channels) for (i = 0; i < 1024; i++, j += avctx->channels)
sce->saved[i] = audio[j]; sce->saved[i] = audio[j];
} }
ff_mdct_calc(&s->mdct1024, sce->coeffs, s->output); ff_mdct_calc(&s->mdct1024, sce->coeffs, s->output);
}else{ } else {
j = channel; j = channel;
for (k = 0; k < 1024; k += 128) { for (k = 0; k < 1024; k += 128) {
for(i = 448 + k; i < 448 + k + 256; i++) for (i = 448 + k; i < 448 + k + 256; i++)
s->output[i - 448 - k] = (i < 1024) s->output[i - 448 - k] = (i < 1024)
? sce->saved[i] ? sce->saved[i]
: audio[channel + (i-1024)*avctx->channels]; : audio[channel + (i-1024)*avctx->channels];
@ -255,7 +255,7 @@ static void apply_window_and_mdct(AVCodecContext *avctx, AACEncContext *s,
ff_mdct_calc(&s->mdct128, sce->coeffs + k, s->output); ff_mdct_calc(&s->mdct128, sce->coeffs + k, s->output);
} }
j = channel; j = channel;
for(i = 0; i < 1024; i++, j += avctx->channels) for (i = 0; i < 1024; i++, j += avctx->channels)
sce->saved[i] = audio[j]; sce->saved[i] = audio[j];
} }
} }
@ -271,12 +271,12 @@ static void put_ics_info(AACEncContext *s, IndividualChannelStream *info)
put_bits(&s->pb, 1, 0); // ics_reserved bit put_bits(&s->pb, 1, 0); // ics_reserved bit
put_bits(&s->pb, 2, info->window_sequence[0]); put_bits(&s->pb, 2, info->window_sequence[0]);
put_bits(&s->pb, 1, info->use_kb_window[0]); put_bits(&s->pb, 1, info->use_kb_window[0]);
if(info->window_sequence[0] != EIGHT_SHORT_SEQUENCE){ if (info->window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
put_bits(&s->pb, 6, info->max_sfb); put_bits(&s->pb, 6, info->max_sfb);
put_bits(&s->pb, 1, 0); // no prediction put_bits(&s->pb, 1, 0); // no prediction
}else{ } else {
put_bits(&s->pb, 4, info->max_sfb); put_bits(&s->pb, 4, info->max_sfb);
for(w = 1; w < 8; w++){ for (w = 1; w < 8; w++) {
put_bits(&s->pb, 1, !info->group_len[w]); put_bits(&s->pb, 1, !info->group_len[w]);
} }
} }
@ -291,9 +291,9 @@ static void encode_ms_info(PutBitContext *pb, ChannelElement *cpe)
int i, w; int i, w;
put_bits(pb, 2, cpe->ms_mode); put_bits(pb, 2, cpe->ms_mode);
if(cpe->ms_mode == 1){ if (cpe->ms_mode == 1) {
for(w = 0; w < cpe->ch[0].ics.num_windows; w += cpe->ch[0].ics.group_len[w]){ for (w = 0; w < cpe->ch[0].ics.num_windows; w += cpe->ch[0].ics.group_len[w]) {
for(i = 0; i < cpe->ch[0].ics.max_sfb; i++) for (i = 0; i < cpe->ch[0].ics.max_sfb; i++)
put_bits(pb, 1, cpe->ms_mask[w*16 + i]); put_bits(pb, 1, cpe->ms_mask[w*16 + i]);
} }
} }
@ -307,34 +307,34 @@ static void adjust_frame_information(AACEncContext *apc, ChannelElement *cpe, in
int i, w, w2, g, ch; int i, w, w2, g, ch;
int start, sum, maxsfb, cmaxsfb; int start, sum, maxsfb, cmaxsfb;
for(ch = 0; ch < chans; ch++){ for (ch = 0; ch < chans; ch++) {
IndividualChannelStream *ics = &cpe->ch[ch].ics; IndividualChannelStream *ics = &cpe->ch[ch].ics;
start = 0; start = 0;
maxsfb = 0; maxsfb = 0;
cpe->ch[ch].pulse.num_pulse = 0; cpe->ch[ch].pulse.num_pulse = 0;
for(w = 0; w < ics->num_windows*16; w += 16){ for (w = 0; w < ics->num_windows*16; w += 16) {
for(g = 0; g < ics->num_swb; g++){ for (g = 0; g < ics->num_swb; g++) {
sum = 0; sum = 0;
//apply M/S //apply M/S
if(!ch && cpe->ms_mask[w + g]){ if (!ch && cpe->ms_mask[w + g]) {
for(i = 0; i < ics->swb_sizes[g]; i++){ for (i = 0; i < ics->swb_sizes[g]; i++) {
cpe->ch[0].coeffs[start+i] = (cpe->ch[0].coeffs[start+i] + cpe->ch[1].coeffs[start+i]) / 2.0; cpe->ch[0].coeffs[start+i] = (cpe->ch[0].coeffs[start+i] + cpe->ch[1].coeffs[start+i]) / 2.0;
cpe->ch[1].coeffs[start+i] = cpe->ch[0].coeffs[start+i] - cpe->ch[1].coeffs[start+i]; cpe->ch[1].coeffs[start+i] = cpe->ch[0].coeffs[start+i] - cpe->ch[1].coeffs[start+i];
} }
} }
start += ics->swb_sizes[g]; start += ics->swb_sizes[g];
} }
for(cmaxsfb = ics->num_swb; cmaxsfb > 0 && cpe->ch[ch].zeroes[w+cmaxsfb-1]; cmaxsfb--); for (cmaxsfb = ics->num_swb; cmaxsfb > 0 && cpe->ch[ch].zeroes[w+cmaxsfb-1]; cmaxsfb--);
maxsfb = FFMAX(maxsfb, cmaxsfb); maxsfb = FFMAX(maxsfb, cmaxsfb);
} }
ics->max_sfb = maxsfb; ics->max_sfb = maxsfb;
//adjust zero bands for window groups //adjust zero bands for window groups
for(w = 0; w < ics->num_windows; w += ics->group_len[w]){ for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
for(g = 0; g < ics->max_sfb; g++){ for (g = 0; g < ics->max_sfb; g++) {
i = 1; i = 1;
for(w2 = w; w2 < w + ics->group_len[w]; w2++){ for (w2 = w; w2 < w + ics->group_len[w]; w2++) {
if(!cpe->ch[ch].zeroes[w2*16 + g]){ if (!cpe->ch[ch].zeroes[w2*16 + g]) {
i = 0; i = 0;
break; break;
} }
@ -344,16 +344,16 @@ static void adjust_frame_information(AACEncContext *apc, ChannelElement *cpe, in
} }
} }
if(chans > 1 && cpe->common_window){ if (chans > 1 && cpe->common_window) {
IndividualChannelStream *ics0 = &cpe->ch[0].ics; IndividualChannelStream *ics0 = &cpe->ch[0].ics;
IndividualChannelStream *ics1 = &cpe->ch[1].ics; IndividualChannelStream *ics1 = &cpe->ch[1].ics;
int msc = 0; int msc = 0;
ics0->max_sfb = FFMAX(ics0->max_sfb, ics1->max_sfb); ics0->max_sfb = FFMAX(ics0->max_sfb, ics1->max_sfb);
ics1->max_sfb = ics0->max_sfb; ics1->max_sfb = ics0->max_sfb;
for(w = 0; w < ics0->num_windows*16; w += 16) for (w = 0; w < ics0->num_windows*16; w += 16)
for(i = 0; i < ics0->max_sfb; i++) for (i = 0; i < ics0->max_sfb; i++)
if(cpe->ms_mask[w+i]) msc++; if (cpe->ms_mask[w+i]) msc++;
if(msc == 0 || ics0->max_sfb == 0) cpe->ms_mode = 0; if (msc == 0 || ics0->max_sfb == 0) cpe->ms_mode = 0;
else cpe->ms_mode = msc < ics0->max_sfb ? 1 : 2; else cpe->ms_mode = msc < ics0->max_sfb ? 1 : 2;
} }
} }
@ -365,7 +365,7 @@ static void encode_band_info(AACEncContext *s, SingleChannelElement *sce)
{ {
int w; int w;
for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
s->coder->encode_window_bands_info(s, sce, w, sce->ics.group_len[w], s->lambda); s->coder->encode_window_bands_info(s, sce, w, sce->ics.group_len[w], s->lambda);
} }
} }
@ -378,11 +378,11 @@ static void encode_scale_factors(AVCodecContext *avctx, AACEncContext *s, Single
int off = sce->sf_idx[0], diff; int off = sce->sf_idx[0], diff;
int i, w; int i, w;
for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for(i = 0; i < sce->ics.max_sfb; i++){ for (i = 0; i < sce->ics.max_sfb; i++) {
if(!sce->zeroes[w*16 + i]){ if (!sce->zeroes[w*16 + i]) {
diff = sce->sf_idx[w*16 + i] - off + SCALE_DIFF_ZERO; diff = sce->sf_idx[w*16 + i] - off + SCALE_DIFF_ZERO;
if(diff < 0 || diff > 120) av_log(avctx, AV_LOG_ERROR, "Scalefactor difference is too big to be coded\n"); if (diff < 0 || diff > 120) av_log(avctx, AV_LOG_ERROR, "Scalefactor difference is too big to be coded\n");
off = sce->sf_idx[w*16 + i]; off = sce->sf_idx[w*16 + i];
put_bits(&s->pb, ff_aac_scalefactor_bits[diff], ff_aac_scalefactor_code[diff]); put_bits(&s->pb, ff_aac_scalefactor_bits[diff], ff_aac_scalefactor_code[diff]);
} }
@ -398,11 +398,11 @@ static void encode_pulses(AACEncContext *s, Pulse *pulse)
int i; int i;
put_bits(&s->pb, 1, !!pulse->num_pulse); put_bits(&s->pb, 1, !!pulse->num_pulse);
if(!pulse->num_pulse) return; if (!pulse->num_pulse) return;
put_bits(&s->pb, 2, pulse->num_pulse - 1); put_bits(&s->pb, 2, pulse->num_pulse - 1);
put_bits(&s->pb, 6, pulse->start); put_bits(&s->pb, 6, pulse->start);
for(i = 0; i < pulse->num_pulse; i++){ for (i = 0; i < pulse->num_pulse; i++) {
put_bits(&s->pb, 5, pulse->pos[i]); put_bits(&s->pb, 5, pulse->pos[i]);
put_bits(&s->pb, 4, pulse->amp[i]); put_bits(&s->pb, 4, pulse->amp[i]);
} }
@ -415,14 +415,14 @@ static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce)
{ {
int start, i, w, w2; int start, i, w, w2;
for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = 0; start = 0;
for(i = 0; i < sce->ics.max_sfb; i++){ for (i = 0; i < sce->ics.max_sfb; i++) {
if(sce->zeroes[w*16 + i]){ if (sce->zeroes[w*16 + i]) {
start += sce->ics.swb_sizes[i]; start += sce->ics.swb_sizes[i];
continue; continue;
} }
for(w2 = w; w2 < w + sce->ics.group_len[w]; w2++){ for (w2 = w; w2 < w + sce->ics.group_len[w]; w2++) {
s->coder->quantize_and_encode_band(s, &s->pb, sce->coeffs + start + w2*128, s->coder->quantize_and_encode_band(s, &s->pb, sce->coeffs + start + w2*128,
sce->ics.swb_sizes[i], sce->ics.swb_sizes[i],
sce->sf_idx[w*16 + i], sce->sf_idx[w*16 + i],
@ -440,7 +440,7 @@ static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce)
static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, int common_window) static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, int common_window)
{ {
put_bits(&s->pb, 8, sce->sf_idx[0]); put_bits(&s->pb, 8, sce->sf_idx[0]);
if(!common_window) put_ics_info(s, &sce->ics); if (!common_window) put_ics_info(s, &sce->ics);
encode_band_info(s, sce); encode_band_info(s, sce);
encode_scale_factors(avctx, s, sce); encode_scale_factors(avctx, s, sce);
encode_pulses(s, &sce->pulse); encode_pulses(s, &sce->pulse);
@ -460,12 +460,12 @@ static void put_bitstream_info(AVCodecContext *avctx, AACEncContext *s, const ch
namelen = strlen(name) + 2; namelen = strlen(name) + 2;
put_bits(&s->pb, 3, TYPE_FIL); put_bits(&s->pb, 3, TYPE_FIL);
put_bits(&s->pb, 4, FFMIN(namelen, 15)); put_bits(&s->pb, 4, FFMIN(namelen, 15));
if(namelen >= 15) if (namelen >= 15)
put_bits(&s->pb, 8, namelen - 16); put_bits(&s->pb, 8, namelen - 16);
put_bits(&s->pb, 4, 0); //extension type - filler put_bits(&s->pb, 4, 0); //extension type - filler
padbits = 8 - (put_bits_count(&s->pb) & 7); padbits = 8 - (put_bits_count(&s->pb) & 7);
align_put_bits(&s->pb); align_put_bits(&s->pb);
for(i = 0; i < namelen - 2; i++) for (i = 0; i < namelen - 2; i++)
put_bits(&s->pb, 8, name[i]); put_bits(&s->pb, 8, name[i]);
put_bits(&s->pb, 12 - padbits, 0); put_bits(&s->pb, 12 - padbits, 0);
} }
@ -480,15 +480,15 @@ static int aac_encode_frame(AVCodecContext *avctx,
const uint8_t *chan_map = aac_chan_configs[avctx->channels-1]; const uint8_t *chan_map = aac_chan_configs[avctx->channels-1];
int chan_el_counter[4]; int chan_el_counter[4];
if(s->last_frame) if (s->last_frame)
return 0; return 0;
if(data){ if (data) {
if(!s->psypp){ if (!s->psypp) {
memcpy(s->samples + 1024 * avctx->channels, data, 1024 * avctx->channels * sizeof(s->samples[0])); memcpy(s->samples + 1024 * avctx->channels, data, 1024 * avctx->channels * sizeof(s->samples[0]));
}else{ } else {
start_ch = 0; start_ch = 0;
samples2 = s->samples + 1024 * avctx->channels; samples2 = s->samples + 1024 * avctx->channels;
for(i = 0; i < chan_map[0]; i++){ for (i = 0; i < chan_map[0]; i++) {
tag = chan_map[i+1]; tag = chan_map[i+1];
chans = tag == TYPE_CPE ? 2 : 1; chans = tag == TYPE_CPE ? 2 : 1;
ff_psy_preprocess(s->psypp, (uint16_t*)data + start_ch, samples2 + start_ch, start_ch, chans); ff_psy_preprocess(s->psypp, (uint16_t*)data + start_ch, samples2 + start_ch, start_ch, chans);
@ -496,26 +496,26 @@ static int aac_encode_frame(AVCodecContext *avctx,
} }
} }
} }
if(!avctx->frame_number){ if (!avctx->frame_number) {
memcpy(s->samples, s->samples + 1024 * avctx->channels, 1024 * avctx->channels * sizeof(s->samples[0])); memcpy(s->samples, s->samples + 1024 * avctx->channels, 1024 * avctx->channels * sizeof(s->samples[0]));
return 0; return 0;
} }
init_put_bits(&s->pb, frame, buf_size*8); init_put_bits(&s->pb, frame, buf_size*8);
if((avctx->frame_number & 0xFF)==1 && !(avctx->flags & CODEC_FLAG_BITEXACT)){ if ((avctx->frame_number & 0xFF)==1 && !(avctx->flags & CODEC_FLAG_BITEXACT)) {
put_bitstream_info(avctx, s, LIBAVCODEC_IDENT); put_bitstream_info(avctx, s, LIBAVCODEC_IDENT);
} }
start_ch = 0; start_ch = 0;
memset(chan_el_counter, 0, sizeof(chan_el_counter)); memset(chan_el_counter, 0, sizeof(chan_el_counter));
for(i = 0; i < chan_map[0]; i++){ for (i = 0; i < chan_map[0]; i++) {
FFPsyWindowInfo wi[2]; FFPsyWindowInfo wi[2];
tag = chan_map[i+1]; tag = chan_map[i+1];
chans = tag == TYPE_CPE ? 2 : 1; chans = tag == TYPE_CPE ? 2 : 1;
cpe = &s->cpe[i]; cpe = &s->cpe[i];
samples2 = samples + start_ch; samples2 = samples + start_ch;
la = samples2 + 1024 * avctx->channels + start_ch; la = samples2 + 1024 * avctx->channels + start_ch;
if(!data) la = NULL; if (!data) la = NULL;
for(j = 0; j < chans; j++){ for (j = 0; j < chans; j++) {
IndividualChannelStream *ics = &cpe->ch[j].ics; IndividualChannelStream *ics = &cpe->ch[j].ics;
int k; int k;
wi[j] = ff_psy_suggest_window(&s->psy, samples2, la, start_ch + j, ics->window_sequence[0]); wi[j] = ff_psy_suggest_window(&s->psy, samples2, la, start_ch + j, ics->window_sequence[0]);
@ -526,7 +526,7 @@ static int aac_encode_frame(AVCodecContext *avctx,
ics->num_windows = wi[j].num_windows; ics->num_windows = wi[j].num_windows;
ics->swb_sizes = s->psy.bands [ics->num_windows == 8]; ics->swb_sizes = s->psy.bands [ics->num_windows == 8];
ics->num_swb = s->psy.num_bands[ics->num_windows == 8]; ics->num_swb = s->psy.num_bands[ics->num_windows == 8];
for(k = 0; k < ics->num_windows; k++) for (k = 0; k < ics->num_windows; k++)
ics->group_len[k] = wi[j].grouping[k]; ics->group_len[k] = wi[j].grouping[k];
s->cur_channel = start_ch + j; s->cur_channel = start_ch + j;
@ -534,31 +534,31 @@ static int aac_encode_frame(AVCodecContext *avctx,
s->coder->search_for_quantizers(avctx, s, &cpe->ch[j], s->lambda); s->coder->search_for_quantizers(avctx, s, &cpe->ch[j], s->lambda);
} }
cpe->common_window = 0; cpe->common_window = 0;
if(chans > 1 if (chans > 1
&& wi[0].window_type[0] == wi[1].window_type[0] && wi[0].window_type[0] == wi[1].window_type[0]
&& wi[0].window_shape == wi[1].window_shape){ && wi[0].window_shape == wi[1].window_shape) {
cpe->common_window = 1; cpe->common_window = 1;
for(j = 0; j < wi[0].num_windows; j++){ for (j = 0; j < wi[0].num_windows; j++) {
if(wi[0].grouping[j] != wi[1].grouping[j]){ if (wi[0].grouping[j] != wi[1].grouping[j]) {
cpe->common_window = 0; cpe->common_window = 0;
break; break;
} }
} }
} }
if(cpe->common_window && s->coder->search_for_ms) if (cpe->common_window && s->coder->search_for_ms)
s->coder->search_for_ms(s, cpe, s->lambda); s->coder->search_for_ms(s, cpe, s->lambda);
adjust_frame_information(s, cpe, chans); adjust_frame_information(s, cpe, chans);
put_bits(&s->pb, 3, tag); put_bits(&s->pb, 3, tag);
put_bits(&s->pb, 4, chan_el_counter[tag]++); put_bits(&s->pb, 4, chan_el_counter[tag]++);
if(chans == 2){ if (chans == 2) {
put_bits(&s->pb, 1, cpe->common_window); put_bits(&s->pb, 1, cpe->common_window);
if(cpe->common_window){ if (cpe->common_window) {
put_ics_info(s, &cpe->ch[0].ics); put_ics_info(s, &cpe->ch[0].ics);
encode_ms_info(&s->pb, cpe); encode_ms_info(&s->pb, cpe);
} }
} }
for(j = 0; j < chans; j++){ for (j = 0; j < chans; j++) {
s->cur_channel = start_ch + j; s->cur_channel = start_ch + j;
ff_psy_set_band_info(&s->psy, s->cur_channel, cpe->ch[j].coeffs, &wi[j]); ff_psy_set_band_info(&s->psy, s->cur_channel, cpe->ch[j].coeffs, &wi[j]);
encode_individual_channel(avctx, s, &cpe->ch[j], cpe->common_window); encode_individual_channel(avctx, s, &cpe->ch[j], cpe->common_window);
@ -571,7 +571,7 @@ static int aac_encode_frame(AVCodecContext *avctx,
avctx->frame_bits = put_bits_count(&s->pb); avctx->frame_bits = put_bits_count(&s->pb);
// rate control stuff // rate control stuff
if(!(avctx->flags & CODEC_FLAG_QSCALE)){ if (!(avctx->flags & CODEC_FLAG_QSCALE)) {
float ratio = avctx->bit_rate * 1024.0f / avctx->sample_rate / avctx->frame_bits; float ratio = avctx->bit_rate * 1024.0f / avctx->sample_rate / avctx->frame_bits;
s->lambda *= ratio; s->lambda *= ratio;
} }
@ -580,7 +580,7 @@ static int aac_encode_frame(AVCodecContext *avctx,
av_log(avctx, AV_LOG_ERROR, "input buffer violation %d > %d.\n", avctx->frame_bits, 6144*avctx->channels); av_log(avctx, AV_LOG_ERROR, "input buffer violation %d > %d.\n", avctx->frame_bits, 6144*avctx->channels);
} }
if(!data) if (!data)
s->last_frame = 1; s->last_frame = 1;
memcpy(s->samples, s->samples + 1024 * avctx->channels, 1024 * avctx->channels * sizeof(s->samples[0])); memcpy(s->samples, s->samples + 1024 * avctx->channels, 1024 * avctx->channels * sizeof(s->samples[0]));
return put_bits_count(&s->pb)>>3; return put_bits_count(&s->pb)>>3;

View File

@ -32,7 +32,7 @@
struct AACEncContext; struct AACEncContext;
typedef struct AACCoefficientsEncoder{ typedef struct AACCoefficientsEncoder {
void (*search_for_quantizers)(AVCodecContext *avctx, struct AACEncContext *s, void (*search_for_quantizers)(AVCodecContext *avctx, struct AACEncContext *s,
SingleChannelElement *sce, const float lambda); SingleChannelElement *sce, const float lambda);
void (*encode_window_bands_info)(struct AACEncContext *s, SingleChannelElement *sce, void (*encode_window_bands_info)(struct AACEncContext *s, SingleChannelElement *sce,
@ -40,7 +40,7 @@ typedef struct AACCoefficientsEncoder{
void (*quantize_and_encode_band)(struct AACEncContext *s, PutBitContext *pb, const float *in, int size, void (*quantize_and_encode_band)(struct AACEncContext *s, PutBitContext *pb, const float *in, int size,
int scale_idx, int cb, const float lambda); int scale_idx, int cb, const float lambda);
void (*search_for_ms)(struct AACEncContext *s, ChannelElement *cpe, const float lambda); void (*search_for_ms)(struct AACEncContext *s, ChannelElement *cpe, const float lambda);
}AACCoefficientsEncoder; } AACCoefficientsEncoder;
extern AACCoefficientsEncoder ff_aac_coders[]; extern AACCoefficientsEncoder ff_aac_coders[];

View File

@ -112,7 +112,7 @@ static av_cold float ath(float f, float add)
+ (0.6 + 0.04 * add) * 0.001 * f * f * f * f; + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
} }
static av_cold int psy_3gpp_init(FFPsyContext *ctx){ static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
Psy3gppContext *pctx; Psy3gppContext *pctx;
float barks[1024]; float barks[1024];
int i, j, g, start; int i, j, g, start;
@ -121,26 +121,26 @@ static av_cold int psy_3gpp_init(FFPsyContext *ctx){
ctx->model_priv_data = av_mallocz(sizeof(Psy3gppContext)); ctx->model_priv_data = av_mallocz(sizeof(Psy3gppContext));
pctx = (Psy3gppContext*) ctx->model_priv_data; pctx = (Psy3gppContext*) ctx->model_priv_data;
for(i = 0; i < 1024; i++) for (i = 0; i < 1024; i++)
barks[i] = calc_bark(i * ctx->avctx->sample_rate / 2048.0); barks[i] = calc_bark(i * ctx->avctx->sample_rate / 2048.0);
minath = ath(3410, ATH_ADD); minath = ath(3410, ATH_ADD);
for(j = 0; j < 2; j++){ for (j = 0; j < 2; j++) {
Psy3gppCoeffs *coeffs = &pctx->psy_coef[j]; Psy3gppCoeffs *coeffs = &pctx->psy_coef[j];
i = 0; i = 0;
prev = 0.0; prev = 0.0;
for(g = 0; g < ctx->num_bands[j]; g++){ for (g = 0; g < ctx->num_bands[j]; g++) {
i += ctx->bands[j][g]; i += ctx->bands[j][g];
coeffs->barks[g] = (barks[i - 1] + prev) / 2.0; coeffs->barks[g] = (barks[i - 1] + prev) / 2.0;
prev = barks[i - 1]; prev = barks[i - 1];
} }
for(g = 0; g < ctx->num_bands[j] - 1; g++){ for (g = 0; g < ctx->num_bands[j] - 1; g++) {
coeffs->spread_low[g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_LOW); coeffs->spread_low[g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_LOW);
coeffs->spread_hi [g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_HI); coeffs->spread_hi [g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_HI);
} }
start = 0; start = 0;
for(g = 0; g < ctx->num_bands[j]; g++){ for (g = 0; g < ctx->num_bands[j]; g++) {
minscale = ath(ctx->avctx->sample_rate * start / 1024.0, ATH_ADD); minscale = ath(ctx->avctx->sample_rate * start / 1024.0, ATH_ADD);
for(i = 1; i < ctx->bands[j][g]; i++){ for (i = 1; i < ctx->bands[j][g]; i++) {
minscale = fminf(minscale, ath(ctx->avctx->sample_rate * (start + i) / 1024.0 / 2.0, ATH_ADD)); minscale = fminf(minscale, ath(ctx->avctx->sample_rate * (start + i) / 1024.0 / 2.0, ATH_ADD));
} }
coeffs->ath[g] = minscale - minath; coeffs->ath[g] = minscale - minath;
@ -189,21 +189,21 @@ static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
FFPsyWindowInfo wi; FFPsyWindowInfo wi;
memset(&wi, 0, sizeof(wi)); memset(&wi, 0, sizeof(wi));
if(la){ if (la) {
float s[8], v; float s[8], v;
int switch_to_eight = 0; int switch_to_eight = 0;
float sum = 0.0, sum2 = 0.0; float sum = 0.0, sum2 = 0.0;
int attack_n = 0; int attack_n = 0;
for(i = 0; i < 8; i++){ for (i = 0; i < 8; i++) {
for(j = 0; j < 128; j++){ for (j = 0; j < 128; j++) {
v = iir_filter(audio[(i*128+j)*ctx->avctx->channels], pch->iir_state); v = iir_filter(audio[(i*128+j)*ctx->avctx->channels], pch->iir_state);
sum += v*v; sum += v*v;
} }
s[i] = sum; s[i] = sum;
sum2 += sum; sum2 += sum;
} }
for(i = 0; i < 8; i++){ for (i = 0; i < 8; i++) {
if(s[i] > pch->win_energy * attack_ratio){ if (s[i] > pch->win_energy * attack_ratio) {
attack_n = i + 1; attack_n = i + 1;
switch_to_eight = 1; switch_to_eight = 1;
break; break;
@ -212,7 +212,7 @@ static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
pch->win_energy = pch->win_energy*7/8 + sum2/64; pch->win_energy = pch->win_energy*7/8 + sum2/64;
wi.window_type[1] = prev_type; wi.window_type[1] = prev_type;
switch(prev_type){ switch (prev_type) {
case ONLY_LONG_SEQUENCE: case ONLY_LONG_SEQUENCE:
wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
break; break;
@ -229,21 +229,21 @@ static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
break; break;
} }
pch->next_grouping = window_grouping[attack_n]; pch->next_grouping = window_grouping[attack_n];
}else{ } else {
for(i = 0; i < 3; i++) for (i = 0; i < 3; i++)
wi.window_type[i] = prev_type; wi.window_type[i] = prev_type;
grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0; grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0;
} }
wi.window_shape = 1; wi.window_shape = 1;
if(wi.window_type[0] != EIGHT_SHORT_SEQUENCE){ if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
wi.num_windows = 1; wi.num_windows = 1;
wi.grouping[0] = 1; wi.grouping[0] = 1;
}else{ } else {
int lastgrp = 0; int lastgrp = 0;
wi.num_windows = 8; wi.num_windows = 8;
for(i = 0; i < 8; i++){ for (i = 0; i < 8; i++) {
if(!((grouping >> i) & 1)) if (!((grouping >> i) & 1))
lastgrp = i; lastgrp = i;
wi.grouping[lastgrp]++; wi.grouping[lastgrp]++;
} }
@ -267,11 +267,11 @@ static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, const float *coefs,
Psy3gppCoeffs *coeffs = &pctx->psy_coef[wi->num_windows == 8]; Psy3gppCoeffs *coeffs = &pctx->psy_coef[wi->num_windows == 8];
//calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation" //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
for(w = 0; w < wi->num_windows*16; w += 16){ for (w = 0; w < wi->num_windows*16; w += 16) {
for(g = 0; g < num_bands; g++){ for (g = 0; g < num_bands; g++) {
Psy3gppBand *band = &pch->band[w+g]; Psy3gppBand *band = &pch->band[w+g];
band->energy = 0.0f; band->energy = 0.0f;
for(i = 0; i < band_sizes[g]; i++) for (i = 0; i < band_sizes[g]; i++)
band->energy += coefs[start+i] * coefs[start+i]; band->energy += coefs[start+i] * coefs[start+i];
band->energy *= 1.0f / (512*512); band->energy *= 1.0f / (512*512);
band->thr = band->energy * 0.001258925f; band->thr = band->energy * 0.001258925f;
@ -281,17 +281,17 @@ static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, const float *coefs,
} }
} }
//modify thresholds - spread, threshold in quiet - 5.4.3 "Spreaded Energy Calculation" //modify thresholds - spread, threshold in quiet - 5.4.3 "Spreaded Energy Calculation"
for(w = 0; w < wi->num_windows*16; w += 16){ for (w = 0; w < wi->num_windows*16; w += 16) {
Psy3gppBand *band = &pch->band[w]; Psy3gppBand *band = &pch->band[w];
for(g = 1; g < num_bands; g++){ for (g = 1; g < num_bands; g++) {
band[g].thr = FFMAX(band[g].thr, band[g-1].thr * coeffs->spread_low[g-1]); band[g].thr = FFMAX(band[g].thr, band[g-1].thr * coeffs->spread_low[g-1]);
} }
for(g = num_bands - 2; g >= 0; g--){ for (g = num_bands - 2; g >= 0; g--) {
band[g].thr = FFMAX(band[g].thr, band[g+1].thr * coeffs->spread_hi [g]); band[g].thr = FFMAX(band[g].thr, band[g+1].thr * coeffs->spread_hi [g]);
} }
for(g = 0; g < num_bands; g++){ for (g = 0; g < num_bands; g++) {
band[g].thr_quiet = FFMAX(band[g].thr, coeffs->ath[g]); band[g].thr_quiet = FFMAX(band[g].thr, coeffs->ath[g]);
if(wi->num_windows != 8 && wi->window_type[1] != EIGHT_SHORT_SEQUENCE){ if (wi->num_windows != 8 && wi->window_type[1] != EIGHT_SHORT_SEQUENCE) {
band[g].thr_quiet = fmaxf(PSY_3GPP_RPEMIN*band[g].thr_quiet, band[g].thr_quiet = fmaxf(PSY_3GPP_RPEMIN*band[g].thr_quiet,
fminf(band[g].thr_quiet, fminf(band[g].thr_quiet,
PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet)); PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));

View File

@ -35,12 +35,12 @@ av_cold int ff_psy_init(FFPsyContext *ctx, AVCodecContext *avctx,
ctx->num_bands = av_malloc (sizeof(ctx->num_bands[0]) * num_lens); ctx->num_bands = av_malloc (sizeof(ctx->num_bands[0]) * num_lens);
memcpy(ctx->bands, bands, sizeof(ctx->bands[0]) * num_lens); memcpy(ctx->bands, bands, sizeof(ctx->bands[0]) * num_lens);
memcpy(ctx->num_bands, num_bands, sizeof(ctx->num_bands[0]) * num_lens); memcpy(ctx->num_bands, num_bands, sizeof(ctx->num_bands[0]) * num_lens);
switch(ctx->avctx->codec_id){ switch (ctx->avctx->codec_id) {
case CODEC_ID_AAC: case CODEC_ID_AAC:
ctx->model = &ff_aac_psy_model; ctx->model = &ff_aac_psy_model;
break; break;
} }
if(ctx->model->init) if (ctx->model->init)
return ctx->model->init(ctx); return ctx->model->init(ctx);
return 0; return 0;
} }
@ -60,7 +60,7 @@ void ff_psy_set_band_info(FFPsyContext *ctx, int channel,
av_cold void ff_psy_end(FFPsyContext *ctx) av_cold void ff_psy_end(FFPsyContext *ctx)
{ {
if(ctx->model->end) if (ctx->model->end)
ctx->model->end(ctx); ctx->model->end(ctx);
av_freep(&ctx->bands); av_freep(&ctx->bands);
av_freep(&ctx->num_bands); av_freep(&ctx->num_bands);
@ -84,16 +84,16 @@ av_cold struct FFPsyPreprocessContext* ff_psy_preprocess_init(AVCodecContext *av
ctx = av_mallocz(sizeof(FFPsyPreprocessContext)); ctx = av_mallocz(sizeof(FFPsyPreprocessContext));
ctx->avctx = avctx; ctx->avctx = avctx;
if(avctx->flags & CODEC_FLAG_QSCALE) if (avctx->flags & CODEC_FLAG_QSCALE)
cutoff_coeff = 1.0f / av_clip(1 + avctx->global_quality / FF_QUALITY_SCALE, 1, 8); cutoff_coeff = 1.0f / av_clip(1 + avctx->global_quality / FF_QUALITY_SCALE, 1, 8);
else else
cutoff_coeff = avctx->bit_rate / (4.0f * avctx->sample_rate * avctx->channels); cutoff_coeff = avctx->bit_rate / (4.0f * avctx->sample_rate * avctx->channels);
ctx->fcoeffs = ff_iir_filter_init_coeffs(FF_FILTER_TYPE_BUTTERWORTH, FF_FILTER_MODE_LOWPASS, ctx->fcoeffs = ff_iir_filter_init_coeffs(FF_FILTER_TYPE_BUTTERWORTH, FF_FILTER_MODE_LOWPASS,
FILT_ORDER, cutoff_coeff, 0.0, 0.0); FILT_ORDER, cutoff_coeff, 0.0, 0.0);
if(ctx->fcoeffs){ if (ctx->fcoeffs) {
ctx->fstate = av_mallocz(sizeof(ctx->fstate[0]) * avctx->channels); ctx->fstate = av_mallocz(sizeof(ctx->fstate[0]) * avctx->channels);
for(i = 0; i < avctx->channels; i++) for (i = 0; i < avctx->channels; i++)
ctx->fstate[i] = ff_iir_filter_init_state(FILT_ORDER); ctx->fstate[i] = ff_iir_filter_init_state(FILT_ORDER);
} }
return ctx; return ctx;
@ -104,15 +104,15 @@ void ff_psy_preprocess(struct FFPsyPreprocessContext *ctx,
int tag, int channels) int tag, int channels)
{ {
int ch, i; int ch, i;
if(ctx->fstate){ if (ctx->fstate) {
for(ch = 0; ch < channels; ch++){ for (ch = 0; ch < channels; ch++) {
ff_iir_filter(ctx->fcoeffs, ctx->fstate[tag+ch], ctx->avctx->frame_size, ff_iir_filter(ctx->fcoeffs, ctx->fstate[tag+ch], ctx->avctx->frame_size,
audio + ch, ctx->avctx->channels, audio + ch, ctx->avctx->channels,
dest + ch, ctx->avctx->channels); dest + ch, ctx->avctx->channels);
} }
}else{ } else {
for(ch = 0; ch < channels; ch++){ for (ch = 0; ch < channels; ch++) {
for(i = 0; i < ctx->avctx->frame_size; i++) for (i = 0; i < ctx->avctx->frame_size; i++)
dest[i*ctx->avctx->channels + ch] = audio[i*ctx->avctx->channels + ch]; dest[i*ctx->avctx->channels + ch] = audio[i*ctx->avctx->channels + ch];
} }
} }

View File

@ -30,29 +30,29 @@
/** /**
* single band psychoacoustic information * single band psychoacoustic information
*/ */
typedef struct FFPsyBand{ typedef struct FFPsyBand {
int bits; int bits;
float energy; float energy;
float threshold; float threshold;
float distortion; float distortion;
float perceptual_weight; float perceptual_weight;
}FFPsyBand; } FFPsyBand;
/** /**
* windowing related information * windowing related information
*/ */
typedef struct FFPsyWindowInfo{ typedef struct FFPsyWindowInfo {
int window_type[3]; ///< window type (short/long/transitional, etc.) - current, previous and next int window_type[3]; ///< window type (short/long/transitional, etc.) - current, previous and next
int window_shape; ///< window shape (sine/KBD/whatever) int window_shape; ///< window shape (sine/KBD/whatever)
int num_windows; ///< number of windows in a frame int num_windows; ///< number of windows in a frame
int grouping[8]; ///< window grouping (for e.g. AAC) int grouping[8]; ///< window grouping (for e.g. AAC)
int *window_sizes; ///< sequence of window sizes inside one frame (for eg. WMA) int *window_sizes; ///< sequence of window sizes inside one frame (for eg. WMA)
}FFPsyWindowInfo; } FFPsyWindowInfo;
/** /**
* context used by psychoacoustic model * context used by psychoacoustic model
*/ */
typedef struct FFPsyContext{ typedef struct FFPsyContext {
AVCodecContext *avctx; ///< encoder context AVCodecContext *avctx; ///< encoder context
const struct FFPsyModel *model; ///< encoder-specific model functions const struct FFPsyModel *model; ///< encoder-specific model functions
@ -63,7 +63,7 @@ typedef struct FFPsyContext{
int num_lens; ///< number of scalefactor band sets int num_lens; ///< number of scalefactor band sets
void* model_priv_data; ///< psychoacoustic model implementation private data void* model_priv_data; ///< psychoacoustic model implementation private data
}FFPsyContext; } FFPsyContext;
/** /**
* codec-specific psychoacoustic model implementation * codec-specific psychoacoustic model implementation
@ -74,7 +74,7 @@ typedef struct FFPsyModel {
FFPsyWindowInfo (*window)(FFPsyContext *ctx, const int16_t *audio, const int16_t *la, int channel, int prev_type); FFPsyWindowInfo (*window)(FFPsyContext *ctx, const int16_t *audio, const int16_t *la, int channel, int prev_type);
void (*analyze)(FFPsyContext *ctx, int channel, const float *coeffs, FFPsyWindowInfo *wi); void (*analyze)(FFPsyContext *ctx, int channel, const float *coeffs, FFPsyWindowInfo *wi);
void (*end) (FFPsyContext *apc); void (*end) (FFPsyContext *apc);
}FFPsyModel; } FFPsyModel;
/** /**
* Initialize psychoacoustic model. * Initialize psychoacoustic model.