mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-23 12:43:46 +02:00
lls: whitespace cosmetics
Signed-off-by: Mans Rullgard <mans@mansr.com>
This commit is contained in:
parent
a3a94e1498
commit
fdaf1d0640
127
libavutil/lls.c
127
libavutil/lls.c
@ -30,76 +30,88 @@
|
||||
|
||||
#include "lls.h"
|
||||
|
||||
void av_init_lls(LLSModel *m, int indep_count){
|
||||
void av_init_lls(LLSModel *m, int indep_count)
|
||||
{
|
||||
memset(m, 0, sizeof(LLSModel));
|
||||
|
||||
m->indep_count= indep_count;
|
||||
m->indep_count = indep_count;
|
||||
}
|
||||
|
||||
void av_update_lls(LLSModel *m, double *var, double decay){
|
||||
int i,j;
|
||||
void av_update_lls(LLSModel *m, double *var, double decay)
|
||||
{
|
||||
int i, j;
|
||||
|
||||
for(i=0; i<=m->indep_count; i++){
|
||||
for(j=i; j<=m->indep_count; j++){
|
||||
for (i = 0; i <= m->indep_count; i++) {
|
||||
for (j = i; j <= m->indep_count; j++) {
|
||||
m->covariance[i][j] *= decay;
|
||||
m->covariance[i][j] += var[i]*var[j];
|
||||
m->covariance[i][j] += var[i] * var[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void av_solve_lls(LLSModel *m, double threshold, int min_order){
|
||||
int i,j,k;
|
||||
double (*factor)[MAX_VARS+1]= (void*)&m->covariance[1][0];
|
||||
double (*covar )[MAX_VARS+1]= (void*)&m->covariance[1][1];
|
||||
double *covar_y = m->covariance[0];
|
||||
int count= m->indep_count;
|
||||
void av_solve_lls(LLSModel *m, double threshold, int min_order)
|
||||
{
|
||||
int i, j, k;
|
||||
double (*factor)[MAX_VARS + 1] = (void *) &m->covariance[1][0];
|
||||
double (*covar) [MAX_VARS + 1] = (void *) &m->covariance[1][1];
|
||||
double *covar_y = m->covariance[0];
|
||||
int count = m->indep_count;
|
||||
|
||||
for(i=0; i<count; i++){
|
||||
for(j=i; j<count; j++){
|
||||
double sum= covar[i][j];
|
||||
for (i = 0; i < count; i++) {
|
||||
for (j = i; j < count; j++) {
|
||||
double sum = covar[i][j];
|
||||
|
||||
for(k=i-1; k>=0; k--)
|
||||
sum -= factor[i][k]*factor[j][k];
|
||||
for (k = i - 1; k >= 0; k--)
|
||||
sum -= factor[i][k] * factor[j][k];
|
||||
|
||||
if(i==j){
|
||||
if(sum < threshold)
|
||||
sum= 1.0;
|
||||
factor[i][i]= sqrt(sum);
|
||||
}else
|
||||
factor[j][i]= sum / factor[i][i];
|
||||
if (i == j) {
|
||||
if (sum < threshold)
|
||||
sum = 1.0;
|
||||
factor[i][i] = sqrt(sum);
|
||||
} else {
|
||||
factor[j][i] = sum / factor[i][i];
|
||||
}
|
||||
}
|
||||
}
|
||||
for(i=0; i<count; i++){
|
||||
double sum= covar_y[i+1];
|
||||
for(k=i-1; k>=0; k--)
|
||||
sum -= factor[i][k]*m->coeff[0][k];
|
||||
m->coeff[0][i]= sum / factor[i][i];
|
||||
|
||||
for (i = 0; i < count; i++) {
|
||||
double sum = covar_y[i + 1];
|
||||
|
||||
for (k = i - 1; k >= 0; k--)
|
||||
sum -= factor[i][k] * m->coeff[0][k];
|
||||
|
||||
m->coeff[0][i] = sum / factor[i][i];
|
||||
}
|
||||
|
||||
for(j=count-1; j>=min_order; j--){
|
||||
for(i=j; i>=0; i--){
|
||||
double sum= m->coeff[0][i];
|
||||
for(k=i+1; k<=j; k++)
|
||||
sum -= factor[k][i]*m->coeff[j][k];
|
||||
m->coeff[j][i]= sum / factor[i][i];
|
||||
for (j = count - 1; j >= min_order; j--) {
|
||||
for (i = j; i >= 0; i--) {
|
||||
double sum = m->coeff[0][i];
|
||||
|
||||
for (k = i + 1; k <= j; k++)
|
||||
sum -= factor[k][i] * m->coeff[j][k];
|
||||
|
||||
m->coeff[j][i] = sum / factor[i][i];
|
||||
}
|
||||
|
||||
m->variance[j]= covar_y[0];
|
||||
for(i=0; i<=j; i++){
|
||||
double sum= m->coeff[j][i]*covar[i][i] - 2*covar_y[i+1];
|
||||
for(k=0; k<i; k++)
|
||||
sum += 2*m->coeff[j][k]*covar[k][i];
|
||||
m->variance[j] += m->coeff[j][i]*sum;
|
||||
m->variance[j] = covar_y[0];
|
||||
|
||||
for (i = 0; i <= j; i++) {
|
||||
double sum = m->coeff[j][i] * covar[i][i] - 2 * covar_y[i + 1];
|
||||
|
||||
for (k = 0; k < i; k++)
|
||||
sum += 2 * m->coeff[j][k] * covar[k][i];
|
||||
|
||||
m->variance[j] += m->coeff[j][i] * sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
double av_evaluate_lls(LLSModel *m, double *param, int order){
|
||||
double av_evaluate_lls(LLSModel *m, double *param, int order)
|
||||
{
|
||||
int i;
|
||||
double out= 0;
|
||||
double out = 0;
|
||||
|
||||
for(i=0; i<=order; i++)
|
||||
out+= param[i]*m->coeff[order][i];
|
||||
for (i = 0; i <= order; i++)
|
||||
out += param[i] * m->coeff[order][i];
|
||||
|
||||
return out;
|
||||
}
|
||||
@ -109,26 +121,29 @@ double av_evaluate_lls(LLSModel *m, double *param, int order){
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|
||||
int main(void){
|
||||
int main(void)
|
||||
{
|
||||
LLSModel m;
|
||||
int i, order;
|
||||
|
||||
av_init_lls(&m, 3);
|
||||
|
||||
for(i=0; i<100; i++){
|
||||
for (i = 0; i < 100; i++) {
|
||||
double var[4];
|
||||
double eval;
|
||||
var[0] = (rand() / (double)RAND_MAX - 0.5)*2;
|
||||
var[1] = var[0] + rand() / (double)RAND_MAX - 0.5;
|
||||
var[2] = var[1] + rand() / (double)RAND_MAX - 0.5;
|
||||
var[3] = var[2] + rand() / (double)RAND_MAX - 0.5;
|
||||
|
||||
var[0] = (rand() / (double) RAND_MAX - 0.5) * 2;
|
||||
var[1] = var[0] + rand() / (double) RAND_MAX - 0.5;
|
||||
var[2] = var[1] + rand() / (double) RAND_MAX - 0.5;
|
||||
var[3] = var[2] + rand() / (double) RAND_MAX - 0.5;
|
||||
av_update_lls(&m, var, 0.99);
|
||||
av_solve_lls(&m, 0.001, 0);
|
||||
for(order=0; order<3; order++){
|
||||
eval= av_evaluate_lls(&m, var+1, order);
|
||||
for (order = 0; order < 3; order++) {
|
||||
eval = av_evaluate_lls(&m, var + 1, order);
|
||||
printf("real:%9f order:%d pred:%9f var:%f coeffs:%f %9f %9f\n",
|
||||
var[0], order, eval, sqrt(m.variance[order] / (i+1)),
|
||||
m.coeff[order][0], m.coeff[order][1], m.coeff[order][2]);
|
||||
var[0], order, eval, sqrt(m.variance[order] / (i + 1)),
|
||||
m.coeff[order][0], m.coeff[order][1],
|
||||
m.coeff[order][2]);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
|
Loading…
Reference in New Issue
Block a user