1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-12 19:18:44 +02:00
Commit Graph

10 Commits

Author SHA1 Message Date
Anton Khirnov
c8c2dfbc37 lavu: move LOCAL_ALIGNED from internal.h to mem_internal.h
That is a more appropriate place for it.
2021-01-01 14:11:01 +01:00
James Almer
c31cbeef58 aarch64/vp9dsp: add missing header includes 2017-03-28 23:02:09 -03:00
Ronald S. Bultje
f8c019944d vp9: re-split the decoder/format/dsp interface header files.
The advantage here is that the internal software decoder interface is
not exposed to the DSP functions or the hardware accelerations.
2017-03-28 18:04:26 -04:00
Clément Bœsch
1c9f4b5078 lavc/vp9: split into vp9{block,data,mvs}
This is following Libav layout to ease merges.
2017-03-27 21:38:21 +02:00
Martin Storsjö
638eceed47 aarch64: Add NEON optimizations for 10 and 12 bit vp9 MC
This work is sponsored by, and copyright, Google.

This has mostly got the same differences to the 8 bit version as
in the arm version. For the horizontal filters, we do 16 pixels
in parallel as well. For the 8 pixel wide vertical filters, we can
accumulate 4 rows before storing, just as in the 8 bit version.

Examples of runtimes vs the 32 bit version, on a Cortex A53:
                                           ARM   AArch64
vp9_avg4_10bpp_neon:                      35.7      30.7
vp9_avg8_10bpp_neon:                      93.5      84.7
vp9_avg16_10bpp_neon:                    324.4     296.6
vp9_avg32_10bpp_neon:                   1236.5    1148.2
vp9_avg64_10bpp_neon:                   4639.6    4571.1
vp9_avg_8tap_smooth_4h_10bpp_neon:       130.0     128.0
vp9_avg_8tap_smooth_4hv_10bpp_neon:      440.0     440.5
vp9_avg_8tap_smooth_4v_10bpp_neon:       114.0     105.5
vp9_avg_8tap_smooth_8h_10bpp_neon:       327.0     314.0
vp9_avg_8tap_smooth_8hv_10bpp_neon:      918.7     865.4
vp9_avg_8tap_smooth_8v_10bpp_neon:       330.0     300.2
vp9_avg_8tap_smooth_16h_10bpp_neon:     1187.5    1155.5
vp9_avg_8tap_smooth_16hv_10bpp_neon:    2663.1    2591.0
vp9_avg_8tap_smooth_16v_10bpp_neon:     1107.4    1078.3
vp9_avg_8tap_smooth_64h_10bpp_neon:    17754.6   17454.7
vp9_avg_8tap_smooth_64hv_10bpp_neon:   33285.2   33001.5
vp9_avg_8tap_smooth_64v_10bpp_neon:    16066.9   16048.6
vp9_put4_10bpp_neon:                      25.5      21.7
vp9_put8_10bpp_neon:                      56.0      52.0
vp9_put16_10bpp_neon/armv8:              183.0     163.1
vp9_put32_10bpp_neon/armv8:              678.6     563.1
vp9_put64_10bpp_neon/armv8:             2679.9    2195.8
vp9_put_8tap_smooth_4h_10bpp_neon:       120.0     118.0
vp9_put_8tap_smooth_4hv_10bpp_neon:      435.2     435.0
vp9_put_8tap_smooth_4v_10bpp_neon:       107.0      98.2
vp9_put_8tap_smooth_8h_10bpp_neon:       303.0     290.0
vp9_put_8tap_smooth_8hv_10bpp_neon:      893.7     828.7
vp9_put_8tap_smooth_8v_10bpp_neon:       305.5     263.5
vp9_put_8tap_smooth_16h_10bpp_neon:     1089.1    1059.2
vp9_put_8tap_smooth_16hv_10bpp_neon:    2578.8    2452.4
vp9_put_8tap_smooth_16v_10bpp_neon:     1009.5     933.5
vp9_put_8tap_smooth_64h_10bpp_neon:    16223.4   15918.6
vp9_put_8tap_smooth_64hv_10bpp_neon:   32153.0   31016.2
vp9_put_8tap_smooth_64v_10bpp_neon:    14516.5   13748.1

These are generally about as fast as the corresponding ARM
routines on the same CPU (at least on the A53), in most cases
marginally faster.

The speedup vs C code is around 4-9x.

Signed-off-by: Martin Storsjö <martin@martin.st>
2017-01-24 22:36:05 +02:00
Martin Storsjö
48ad3fe1be aarch64: vp9dsp: Restructure the bpp checks
This work is sponsored by, and copyright, Google.

This is more in line with how it will be extended for more bitdepths.

Signed-off-by: Martin Storsjö <martin@martin.st>
2017-01-24 22:36:02 +02:00
Martin Storsjö
02cfb9a16e aarch64: vp9dsp: Fix vertical alignment in the init file
This is cherrypicked from libav commit
65074791e8.

Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2017-01-14 21:13:40 +01:00
Martin Storsjö
f1212e472b aarch64: vp9: Implement NEON loop filters
This work is sponsored by, and copyright, Google.

These are ported from the ARM version; thanks to the larger
amount of registers available, we can do the loop filters with
16 pixels at a time. The implementation is fully templated, with
a single macro which can generate versions for both 8 and
16 pixels wide, for both 4, 8 and 16 pixels loop filters
(and the 4/8 mixed versions as well).

For the 8 pixel wide versions, it is pretty close in speed (the
v_4_8 and v_8_8 filters are the best examples of this; the h_4_8
and h_8_8 filters seem to get some gain in the load/transpose/store
part). For the 16 pixels wide ones, we get a speedup of around
1.2-1.4x compared to the 32 bit version.

Examples of runtimes vs the 32 bit version, on a Cortex A53:
                                       ARM AArch64
vp9_loop_filter_h_4_8_neon:          144.0   127.2
vp9_loop_filter_h_8_8_neon:          207.0   182.5
vp9_loop_filter_h_16_8_neon:         415.0   328.7
vp9_loop_filter_h_16_16_neon:        672.0   558.6
vp9_loop_filter_mix2_h_44_16_neon:   302.0   203.5
vp9_loop_filter_mix2_h_48_16_neon:   365.0   305.2
vp9_loop_filter_mix2_h_84_16_neon:   365.0   305.2
vp9_loop_filter_mix2_h_88_16_neon:   376.0   305.2
vp9_loop_filter_mix2_v_44_16_neon:   193.2   128.2
vp9_loop_filter_mix2_v_48_16_neon:   246.7   218.4
vp9_loop_filter_mix2_v_84_16_neon:   248.0   218.5
vp9_loop_filter_mix2_v_88_16_neon:   302.0   218.2
vp9_loop_filter_v_4_8_neon:           89.0    88.7
vp9_loop_filter_v_8_8_neon:          141.0   137.7
vp9_loop_filter_v_16_8_neon:         295.0   272.7
vp9_loop_filter_v_16_16_neon:        546.0   453.7

The speedup vs C code in checkasm tests is around 2-7x, which is
pretty much the same as for the 32 bit version. Even if these functions
are faster than their 32 bit equivalent, the C version that we compare
to also became around 1.3-1.7x faster than the C version in 32 bit.

Based on START_TIMER/STOP_TIMER wrapping around a few individual
functions, the speedup vs C code is around 4-5x.

Examples of runtimes vs C on a Cortex A57 (for a slightly older version
of the patch):
                         A57 gcc-5.3  neon
loop_filter_h_4_8_neon:        256.6  93.4
loop_filter_h_8_8_neon:        307.3 139.1
loop_filter_h_16_8_neon:       340.1 254.1
loop_filter_h_16_16_neon:      827.0 407.9
loop_filter_mix2_h_44_16_neon: 524.5 155.4
loop_filter_mix2_h_48_16_neon: 644.5 173.3
loop_filter_mix2_h_84_16_neon: 630.5 222.0
loop_filter_mix2_h_88_16_neon: 697.3 222.0
loop_filter_mix2_v_44_16_neon: 598.5 100.6
loop_filter_mix2_v_48_16_neon: 651.5 127.0
loop_filter_mix2_v_84_16_neon: 591.5 167.1
loop_filter_mix2_v_88_16_neon: 855.1 166.7
loop_filter_v_4_8_neon:        271.7  65.3
loop_filter_v_8_8_neon:        312.5 106.9
loop_filter_v_16_8_neon:       473.3 206.5
loop_filter_v_16_16_neon:      976.1 327.8

The speed-up compared to the C functions is 2.5 to 6 and the cortex-a57
is again 30-50% faster than the cortex-a53.

This is an adapted cherry-pick from libav commits
9d2afd1eb8 and
31756abe29.

Signed-off-by: Ronald S. Bultje <rsbultje@gmail.com>
2016-11-15 15:10:03 -05:00
Martin Storsjö
f43079e11c aarch64: vp9: Add NEON itxfm routines
This work is sponsored by, and copyright, Google.

These are ported from the ARM version; thanks to the larger
amount of registers available, we can do the 16x16 and 32x32
transforms in slices 8 pixels wide instead of 4. This gives
a speedup of around 1.4x compared to the 32 bit version.

The fact that aarch64 doesn't have the same d/q register
aliasing makes some of the macros quite a bit simpler as well.

Examples of runtimes vs the 32 bit version, on a Cortex A53:
                                       ARM  AArch64
vp9_inv_adst_adst_4x4_add_neon:       90.0     87.7
vp9_inv_adst_adst_8x8_add_neon:      400.0    354.7
vp9_inv_adst_adst_16x16_add_neon:   2526.5   1827.2
vp9_inv_dct_dct_4x4_add_neon:         74.0     72.7
vp9_inv_dct_dct_8x8_add_neon:        271.0    256.7
vp9_inv_dct_dct_16x16_add_neon:     1960.7   1372.7
vp9_inv_dct_dct_32x32_add_neon:    11988.9   8088.3
vp9_inv_wht_wht_4x4_add_neon:         63.0     57.7

The speedup vs C code (2-4x) is smaller than in the 32 bit case,
mostly because the C code ends up significantly faster (around
1.6x faster, with GCC 5.4) when built for aarch64.

Examples of runtimes vs C on a Cortex A57 (for a slightly older version
of the patch):
                                A57 gcc-5.3   neon
vp9_inv_adst_adst_4x4_add_neon:       152.2   60.0
vp9_inv_adst_adst_8x8_add_neon:       948.2  288.0
vp9_inv_adst_adst_16x16_add_neon:    4830.4 1380.5
vp9_inv_dct_dct_4x4_add_neon:         153.0   58.6
vp9_inv_dct_dct_8x8_add_neon:         789.2  180.2
vp9_inv_dct_dct_16x16_add_neon:      3639.6  917.1
vp9_inv_dct_dct_32x32_add_neon:     20462.1 4985.0
vp9_inv_wht_wht_4x4_add_neon:          91.0   49.8

The asm is around factor 3-4 faster than C on the cortex-a57 and the asm
is around 30-50% faster on the a57 compared to the a53.

This is an adapted cherry-pick from libav commit
3c9546dfaf.

Signed-off-by: Ronald S. Bultje <rsbultje@gmail.com>
2016-11-15 15:10:03 -05:00
Martin Storsjö
1f7801c2bc aarch64: vp9: Add NEON optimizations of VP9 MC functions
This work is sponsored by, and copyright, Google.

These are ported from the ARM version; it is essentially a 1:1
port with no extra added features, but with some hand tuning
(especially for the plain copy/avg functions). The ARM version
isn't very register starved to begin with, so there's not much
to be gained from having more spare registers here - we only
avoid having to clobber callee-saved registers.

Examples of runtimes vs the 32 bit version, on a Cortex A53:
                                     ARM   AArch64
vp9_avg4_neon:                      27.2      23.7
vp9_avg8_neon:                      56.5      54.7
vp9_avg16_neon:                    169.9     167.4
vp9_avg32_neon:                    585.8     585.2
vp9_avg64_neon:                   2460.3    2294.7
vp9_avg_8tap_smooth_4h_neon:       132.7     125.2
vp9_avg_8tap_smooth_4hv_neon:      478.8     442.0
vp9_avg_8tap_smooth_4v_neon:       126.0      93.7
vp9_avg_8tap_smooth_8h_neon:       241.7     234.2
vp9_avg_8tap_smooth_8hv_neon:      690.9     646.5
vp9_avg_8tap_smooth_8v_neon:       245.0     205.5
vp9_avg_8tap_smooth_64h_neon:    11273.2   11280.1
vp9_avg_8tap_smooth_64hv_neon:   22980.6   22184.1
vp9_avg_8tap_smooth_64v_neon:    11549.7   10781.1
vp9_put4_neon:                      18.0      17.2
vp9_put8_neon:                      40.2      37.7
vp9_put16_neon:                     97.4      99.5
vp9_put32_neon/armv8:              346.0     307.4
vp9_put64_neon/armv8:             1319.0    1107.5
vp9_put_8tap_smooth_4h_neon:       126.7     118.2
vp9_put_8tap_smooth_4hv_neon:      465.7     434.0
vp9_put_8tap_smooth_4v_neon:       113.0      86.5
vp9_put_8tap_smooth_8h_neon:       229.7     221.6
vp9_put_8tap_smooth_8hv_neon:      658.9     621.3
vp9_put_8tap_smooth_8v_neon:       215.0     187.5
vp9_put_8tap_smooth_64h_neon:    10636.7   10627.8
vp9_put_8tap_smooth_64hv_neon:   21076.8   21026.9
vp9_put_8tap_smooth_64v_neon:     9635.0    9632.4

These are generally about as fast as the corresponding ARM
routines on the same CPU (at least on the A53), in most cases
marginally faster.

The speedup vs C code is pretty much the same as for the 32 bit
case; on the A53 it's around 6-13x for ther larger 8tap filters.
The exact speedup varies a little, since the C versions generally
don't end up exactly as slow/fast as on 32 bit.

This is an adapted cherry-pick from libav commit
383d96aa22.

Signed-off-by: Ronald S. Bultje <rsbultje@gmail.com>
2016-11-15 15:10:03 -05:00