1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-02 03:06:28 +02:00
Commit Graph

581 Commits

Author SHA1 Message Date
Michael Niedermayer
5dae33bb39 tools/target_dec_fuzzer: Adjust VQA threshold
Fixes: Timeout (169sec -> 9sec)
Fixes: 23745/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_VQA_fuzzer-5638172179693568

Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-09-19 00:40:56 +02:00
Michael Niedermayer
e3af2a0756 tools:target_dem_fuzzer: Split into a fuzzer fuzzing at the protocol level and one fuzzing a fixed demuxer input
This should improve coverage and should improve the efficiency of seed files

Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-09-13 10:40:02 +02:00
Michael Niedermayer
a12864938d tools/target_dec_fuzzer: Adjust threshold for WMV3IMAGE
Fixes: Timeout (1131sec -> 1sec)
Fixes: 24727/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_WMV3IMAGE_fuzzer-5754167793287168

Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-09-07 23:05:25 +02:00
Mingyu Yin
3477feb643 dnn_backend_native_layer_mathbinary: add floormod support
Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
2020-08-24 09:09:11 +08:00
Michael Niedermayer
d08c3f56ec tools/target_dec_fuzzer: Adjust threshold for DST
Fixes: Timeout (too long -> 3sec)
Fixes: 24239/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_DST_fuzzer-5189061015502848

Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Reviewed-by: Peter Ross <pross@xvid.org>
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-08-18 14:56:04 +02:00
Mingyu Yin
4ed6bca4ae dnn_backend_native_layer_mathunary: add round support
Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
Reviewed-by: Guo, Yejun <yejun.guo@intel.com>
2020-08-12 10:30:46 +08:00
Michael Niedermayer
4b7189848f tools/target_dec_fuzzer: Adjust threshold for AGM
Fixes: Timeout (142sec -> 2sec)
Fixes: 24426/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_AGM_fuzzer-5639724379930624

Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-08-11 14:21:56 +02:00
Ting Fu
91efc41a69 dnn/native: add native support for avg_pool
Not support pooling strides in channel dimension yet.

Signed-off-by: Ting Fu <ting.fu@intel.com>
Reviewed-by: Guo, Yejun <yejun.guo@intel.com>
2020-08-10 16:37:39 +08:00
Mingyu Yin
fab00b0ae0 dnn_backend_native_layer_mathunary: add floor support
It can be tested with the model generated with below python script:

import tensorflow as tf
import os
import numpy as np
import imageio
from tensorflow.python.framework import graph_util
name = 'floor'

pb_file_path = os.getcwd()
if not os.path.exists(pb_file_path+'/{}_savemodel/'.format(name)):
    os.mkdir(pb_file_path+'/{}_savemodel/'.format(name))

with tf.Session(graph=tf.Graph()) as sess:
    in_img = imageio.imread('detection.jpg')
    in_img = in_img.astype(np.float32)
    in_data = in_img[np.newaxis, :]
    input_x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
    y_ = tf.math.floor(input_x*255)/255
    y = tf.identity(y_, name='dnn_out')
    sess.run(tf.global_variables_initializer())
    constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])

    with tf.gfile.FastGFile(pb_file_path+'/{}_savemodel/model.pb'.format(name), mode='wb') as f:
        f.write(constant_graph.SerializeToString())

    print("model.pb generated, please in ffmpeg path use\n \n \
    python tools/python/convert.py {}_savemodel/model.pb --outdir={}_savemodel/ \n \nto generate model.model\n".format(name,name))

    output = sess.run(y, feed_dict={ input_x: in_data})
    imageio.imsave("out.jpg", np.squeeze(output))

    print("To verify, please ffmpeg path use\n \n \
    ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow -f framemd5 {}_savemodel/tensorflow_out.md5\n  \
    or\n \
    ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow {}_savemodel/out_tensorflow.jpg\n \nto generate output result of tensorflow model\n".format(name, name, name, name))

    print("To verify, please ffmpeg path use\n \n \
    ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native -f framemd5 {}_savemodel/native_out.md5\n  \
    or \n \
    ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native {}_savemodel/out_native.jpg\n \nto generate output result of native model\n".format(name, name, name, name))

Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
2020-08-07 10:34:22 +08:00
Mingyu Yin
9fbdd5454b dnn_backend_native_layer_mathunary: add ceil support
It can be tested with the model generated with below python script:

import tensorflow as tf
import os
import numpy as np
import imageio
from tensorflow.python.framework import graph_util
name = 'ceil'

pb_file_path = os.getcwd()
if not os.path.exists(pb_file_path+'/{}_savemodel/'.format(name)):
    os.mkdir(pb_file_path+'/{}_savemodel/'.format(name))

with tf.Session(graph=tf.Graph()) as sess:
    in_img = imageio.imread('detection.jpg')
    in_img = in_img.astype(np.float32)
    in_data = in_img[np.newaxis, :]
    input_x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
    y = tf.math.ceil( input_x, name='dnn_out')
    sess.run(tf.global_variables_initializer())
    constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])

    with tf.gfile.FastGFile(pb_file_path+'/{}_savemodel/model.pb'.format(name), mode='wb') as f:
        f.write(constant_graph.SerializeToString())

    print("model.pb generated, please in ffmpeg path use\n \n \
    python tools/python/convert.py ceil_savemodel/model.pb --outdir=ceil_savemodel/ \n \n \
    to generate model.model\n")

    output = sess.run(y, feed_dict={ input_x: in_data})
    imageio.imsave("out.jpg", np.squeeze(output))

    print("To verify, please ffmpeg path use\n \n \
    ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model=ceil_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow -f framemd5 ceil_savemodel/tensorflow_out.md5\n \n \
    to generate output result of tensorflow model\n")

    print("To verify, please ffmpeg path use\n \n \
    ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model=ceil_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native -f framemd5 ceil_savemodel/native_out.md5\n \n \
    to generate output result of native model\n")

Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
Reviewed-by: Guo, Yejun <yejun.guo@intel.com>
2020-08-04 19:56:54 +08:00
Ting Fu
c0cdeea0ee dnn_backend_native_layer_mathunary: add atanh support
It can be tested with the model generated with below python script:

import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')

please uncomment the part you want to test

x_sinh_1 = tf.sinh(x)
x_out = tf.divide(x_sinh_1, 1.176) # sinh(1.0)

x_cosh_1 = tf.cosh(x)
x_out = tf.divide(x_cosh_1, 1.55) # cosh(1.0)

x_tanh_1 = tf.tanh(x)
x__out = tf.divide(x_tanh_1, 0.77) # tanh(1.0)

x_asinh_1 = tf.asinh(x)
x_out = tf.divide(x_asinh_1, 0.89) # asinh(1.0/1.1)

x_acosh_1 = tf.add(x, 1.1)
x_acosh_2 = tf.acosh(x_acosh_1) # accept (1, inf)
x_out = tf.divide(x_acosh_2, 1.4) # acosh(2.1)

x_atanh_1 = tf.divide(x, 1.1)
x_atanh_2 = tf.atanh(x_atanh_1) # accept (-1, 1)
x_out = tf.divide(x_atanh_2, 1.55) # atanhh(1.0/1.1)

y = tf.identity(x_out, name='dnn_out') #please only preserve the x_out you want to test

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-07-06 12:45:14 +08:00
Ting Fu
cd2e3a864d dnn_backend_native_layer_mathunary: add acosh support
Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-07-06 12:45:14 +08:00
Ting Fu
9d14b38d9d dnn_backend_native_layer_mathunary: add asinh support
Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-07-06 12:45:14 +08:00
Ting Fu
ea71e731f4 dnn_backend_native_layer_mathunary: add tanh support
Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-07-06 12:45:14 +08:00
Ting Fu
62fc7e3035 dnn_backend_native_layer_mathunary: add cosh support
Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-07-06 12:45:14 +08:00
Ting Fu
91b4037101 dnn_backend_native_layer_mathunary: add sinh support
Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-07-06 12:45:14 +08:00
Ting Fu
13f5613e68 dnn_backend_native_layer_mathunary: add atan support
It can be tested with the model generated with below python script:

import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.atan(x)
x2 = tf.divide(x1, 3.1416/4) # pi/4
y = tf.identity(x2, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
2020-06-25 08:41:50 +08:00
Ting Fu
461485feac dnn_backend_native_layer_mathunary: add acos support
It can be tested with the model generated with below python script:

import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.acos(x)
x2 = tf.divide(x1, 3.1416/2) # pi/2
y = tf.identity(x2, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
2020-06-25 08:41:50 +08:00
Ting Fu
486c0c419d dnn_backend_native_layer_mathunary: add asin support
It can be tested with the model generated with below python script:

import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.asin(x)
x2 = tf.divide(x1, 3.1416/2) # pi/2
y = tf.identity(x2, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
2020-06-25 08:41:50 +08:00
Michael Niedermayer
0b182ff66d tools/target_dec_fuzzer: Adjust threshold for lagarith
Fixes: Timeout (3minute 49 sec -> 3sec)
Fixes: 22020/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_LAGARITH_fuzzer-5708544679870464

Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-06-11 14:59:04 +02:00
Michael Niedermayer
d3747f4431 tools/target_dem_fuzzer: Use file extensions listed in input formats
This should make it easier for the fuzzer to fuzz formats being detected only by
file extension and thus increase coverage

Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-06-11 13:49:54 +02:00
Ting Fu
22d0860c13 dnn_backend_native_layer_mathunary: add tan support
It can be tested with the model generated with below python scripy

import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.multiply(x, 0.78)
x2 = tf.tan(x1)
y = tf.identity(x2, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
2020-06-11 11:10:51 +08:00
Ting Fu
88fb494f42 dnn_backend_native_layer_mathunary: add cos support
It can be tested with the model generated with below python scripy

import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.multiply(x, 1.5)
x2 = tf.cos(x1)
y = tf.identity(x2, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
2020-06-11 11:10:51 +08:00
Ting Fu
0b6d3f0d83 dnn_backend_native_layer_mathunary: add sin support
It can be tested with the model file generated with below python scripy:

import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.multiply(x, 3.14)
x2 = tf.sin(x1)
y = tf.identity(x2, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
2020-06-11 11:10:51 +08:00
Michael Niedermayer
3371d0611f tools/target_dec_fuzzer: enable mjpeg for tiff or tdsc
This is needed for fuzzing tiff/tdsc and should increase coverage

Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-06-08 20:45:56 +02:00
Michael Niedermayer
3e651eeac4 tools/target_dem_fuzzer: Implement AVSEEK_SIZE
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-06-08 12:27:18 +02:00
Ting Fu
f73cc61bf5 dnn_backend_native_layer_mathunary: add abs support
more math unary operations will be added here

It can be tested with the model file generated with below python scripy:

import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.subtract(x, 0.5)
x2 = tf.abs(x1)
y = tf.identity(x2, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
2020-05-28 11:04:21 +08:00
Michael Niedermayer
6d4fdb4f5a tools/target_dec_fuzzer: Adjust max_pixels for AV_CODEC_ID_HAP
Fixes: Timeout (170sec -> 6sec)
Fixes: 20956/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_HAP_fuzzer-5713643025203200

Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-05-27 23:52:46 +02:00
Michael Niedermayer
d6824ef905 tools/target_dec_fuzzer: Reduce maxpixels for HEVC
high resolutions with only small blocks appear to be rather
slow with the fuzzer + sanitizers.
A solution which makes this run faster is welcome.

Fixes: Timeout (did not wait -> 17sec)
Fixes: 21006/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_HEVC_fuzzer-6002552539971584

Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-05-27 23:52:46 +02:00
Michael Niedermayer
05d364dccc tools/target_dec_fuzzer: Do not test AV_CODEC_FLAG2_FAST with AV_CODEC_ID_H264
This combination skips allocating large padding which can read out of array

Fixes: 20978/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_H264_fuzzer-5746381832847360

Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-05-27 23:52:46 +02:00
Anton Khirnov
ea980d4162 fate: add tests for h264 and vp9 video enc parameters export 2020-05-25 11:59:45 +02:00
Anton Khirnov
bf80725352 lavc: rename bsf.h to bsf_internal.h
This will allow adding a public header named bsf.h
2020-05-22 14:38:57 +02:00
Michael Niedermayer
4f54982773 tools/target_dec_fuzzer: Adjust threshold for PNG and APNG
Fixes: Timeout (84sec -> 2sec)
Fixes: 21127/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_APNG_fuzzer-5098412367413248

Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-05-10 01:09:13 +02:00
Guo, Yejun
71e28c5422 dnn/native: add native support for minimum
it can be tested with model file generated with below python script:
import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.minimum(0.7, x)
x2 = tf.maximum(x1, 0.4)
y = tf.identity(x2, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
2020-05-08 15:22:27 +08:00
Josh de Kock
d817b57d36 tools: fix const specifier for AVInputFormat
Signed-off-by: Josh de Kock <josh@itanimul.li>
2020-04-30 10:25:32 +01:00
Guo, Yejun
8ce9d88f93 dnn/native: add native support for divide
it can be tested with model file generated with below python script:
import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
z1 = 2 / x
z2 = 1 / z1
z3 = z2 / 0.25 + 0.3
z4 = z3 - x * 1.5 - 0.3
y = tf.identity(z4, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
2020-04-22 13:15:00 +08:00
Guo, Yejun
ef79408e97 dnn/native: add native support for 'mul'
it can be tested with model file generated from above python script:

import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
z1 = 0.5 + 0.3 * x
z2 = z1 * 4
z3 = z2 - x - 2.0
y = tf.identity(z3, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
2020-04-22 13:14:47 +08:00
Guo, Yejun
6aa7e07e7c dnn/native: add native support for 'add'
It can be tested with the model file generated with below python script:

import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
z1 = 0.039 + x
z2 = x + 0.042
z3 = z1 + z2
z4 = z3 - 0.381
z5 = z4 - x
y = tf.math.maximum(z5, 0.0, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
2020-04-22 13:14:30 +08:00
Josh de Kock
39962072a8 tools: stop using deprecated av_codec_next()
Signed-off-by: Josh de Kock <josh@itanimul.li>
2020-04-20 15:08:20 +00:00
Michael Niedermayer
2db37bf4cd tools/target_dec_fuzzer: Adjust threshold for zerocodec
Fixes: Timeout (147sec -> 1sec)
Fixes: 20764/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_ZEROCODEC_fuzzer-5068274603917312

Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-04-12 16:36:47 +02:00
Michael Niedermayer
8dee1d7a30 tools/target_dec_fuzzer: Adjust threshold for screenpresso
Fixes: Timeout (332 -> 21 sec)
Fixes: 20280/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_SCREENPRESSO_fuzzer-6238663432470528

Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-04-07 18:27:40 +02:00
Guo, Yejun
ffa1561608 dnn_backend_native_layer_mathbinary: add sub support
more math binary operations will be added here

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
2020-04-07 11:04:34 +08:00
Michael Niedermayer
32522b5307 tools/target_dec_fuzzer: limit per frame samples for APE
APE in its highest compression mode is really slow so even one frame
of millions of samples takes a long time

Fixes: Timeout (too long -> 3sec)
Fixes: 19937/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_APE_fuzzer-5751668818051072

Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-01-30 19:59:10 +01:00
Michael Niedermayer
48b6947821 tools/target_dec_fuzzer: Add threshold for ALS
Fixes: Timeout (253sec -> 16sec)
Fixes: 18668/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_ALS_fuzzer-6227155369590784

Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-01-30 19:40:26 +01:00
Michael Niedermayer
04e524c34b tools/target_dec_fuzzer: Add threshold for IFF_ILBM
Fixes: Timeout (32 -> 1sec)
Fixes: 20138/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_IFF_ILBM_fuzzer-5634665251864576

Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Reviewed-by: Peter Ross <pross@xvid.org>
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-01-29 13:06:26 +01:00
Michael Niedermayer
cc7bf7e05c tools/target_dec_fuzzer: Sort threshold list alphabetically
This also removes the comments as they are hard to maintain
together with sorted lists

Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-01-29 13:06:26 +01:00
Michael Niedermayer
5f7727e1c9 tools/target_dec_fuzzer: Use codec_tags list
This should make it much quicker for the fuzzer to test
real relevant codec_tags

Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-01-22 21:50:49 +01:00
Michael Niedermayer
00447b6f52 tools/target_dec_fuzzer: Also Fuzz with CPU optimizations disabled
This should improve coverage of *_c()

Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-01-21 21:38:38 +01:00
Michael Niedermayer
4b733a7f5f tools/target_dec_fuzzer: Fuzz private options of AC3/E-AC3
This should improve AC-3 coverage

Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-01-21 21:38:38 +01:00
Michael Niedermayer
48083f1890 tools/target_dec_fuzzer: Fuzz idct_algo value
This should improve coverage

Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-01-21 21:38:38 +01:00