1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
Commit Graph

21181 Commits

Author SHA1 Message Date
Mark Thompson
b6582b2927 qsv: Add VC-1 decoder
It uses the same code as the MPEG-2 decoder, so the file is renamed
to contain all "other" (that is, not H.26[45]) codecs.
2016-11-14 19:38:19 +00:00
Mark Thompson
fea4dc05b4 vc1: Return stream format information from parser 2016-11-14 19:38:19 +00:00
Mark Thompson
0940b748bd qsvdec: Only warn about unconsumed data if it happens more than once 2016-11-14 19:38:19 +00:00
Mark Thompson
030d84fa2e qsvdec: Pass field order information to libmfx
The VC-1 decoder fails to initialise if this is not set.
2016-11-14 19:38:19 +00:00
Mark Thompson
cd1047f391 qsvdec: Pass the correct profile to libmfx
This was correct for H.26[45], because libmfx uses the same values
derived from profile_idc and the constraint_set flags, but it is
wrong for other codecs.

Also avoid passing FF_LEVEL_UNKNOWN (-99) as the level, as this is
certainly invalid.
2016-11-14 19:38:19 +00:00
Mark Thompson
3297577f3e mpegvideo: Return correct coded frame sizes from parser 2016-11-14 19:38:19 +00:00
Janne Grunau
31756abe29 aarch64: vp9: loop_filter: fix typo in skip flatout8 check
The 16_16 loop filter functions could miss an early exit before
flatout8.

Signed-off-by: Martin Storsjö <martin@martin.st>
2016-11-14 08:51:58 +02:00
Martin Storsjö
9d2afd1eb8 aarch64: vp9: Implement NEON loop filters
This work is sponsored by, and copyright, Google.

These are ported from the ARM version; thanks to the larger
amount of registers available, we can do the loop filters with
16 pixels at a time. The implementation is fully templated, with
a single macro which can generate versions for both 8 and
16 pixels wide, for both 4, 8 and 16 pixels loop filters
(and the 4/8 mixed versions as well).

For the 8 pixel wide versions, it is pretty close in speed (the
v_4_8 and v_8_8 filters are the best examples of this; the h_4_8
and h_8_8 filters seem to get some gain in the load/transpose/store
part). For the 16 pixels wide ones, we get a speedup of around
1.2-1.4x compared to the 32 bit version.

Examples of runtimes vs the 32 bit version, on a Cortex A53:
                                       ARM AArch64
vp9_loop_filter_h_4_8_neon:          144.0   127.2
vp9_loop_filter_h_8_8_neon:          207.0   182.5
vp9_loop_filter_h_16_8_neon:         415.0   328.7
vp9_loop_filter_h_16_16_neon:        672.0   558.6
vp9_loop_filter_mix2_h_44_16_neon:   302.0   203.5
vp9_loop_filter_mix2_h_48_16_neon:   365.0   305.2
vp9_loop_filter_mix2_h_84_16_neon:   365.0   305.2
vp9_loop_filter_mix2_h_88_16_neon:   376.0   305.2
vp9_loop_filter_mix2_v_44_16_neon:   193.2   128.2
vp9_loop_filter_mix2_v_48_16_neon:   246.7   218.4
vp9_loop_filter_mix2_v_84_16_neon:   248.0   218.5
vp9_loop_filter_mix2_v_88_16_neon:   302.0   218.2
vp9_loop_filter_v_4_8_neon:           89.0    88.7
vp9_loop_filter_v_8_8_neon:          141.0   137.7
vp9_loop_filter_v_16_8_neon:         295.0   272.7
vp9_loop_filter_v_16_16_neon:        546.0   453.7

The speedup vs C code in checkasm tests is around 2-7x, which is
pretty much the same as for the 32 bit version. Even if these functions
are faster than their 32 bit equivalent, the C version that we compare
to also became around 1.3-1.7x faster than the C version in 32 bit.

Based on START_TIMER/STOP_TIMER wrapping around a few individual
functions, the speedup vs C code is around 4-5x.

Examples of runtimes vs C on a Cortex A57 (for a slightly older version
of the patch):
                         A57 gcc-5.3  neon
loop_filter_h_4_8_neon:        256.6  93.4
loop_filter_h_8_8_neon:        307.3 139.1
loop_filter_h_16_8_neon:       340.1 254.1
loop_filter_h_16_16_neon:      827.0 407.9
loop_filter_mix2_h_44_16_neon: 524.5 155.4
loop_filter_mix2_h_48_16_neon: 644.5 173.3
loop_filter_mix2_h_84_16_neon: 630.5 222.0
loop_filter_mix2_h_88_16_neon: 697.3 222.0
loop_filter_mix2_v_44_16_neon: 598.5 100.6
loop_filter_mix2_v_48_16_neon: 651.5 127.0
loop_filter_mix2_v_84_16_neon: 591.5 167.1
loop_filter_mix2_v_88_16_neon: 855.1 166.7
loop_filter_v_4_8_neon:        271.7  65.3
loop_filter_v_8_8_neon:        312.5 106.9
loop_filter_v_16_8_neon:       473.3 206.5
loop_filter_v_16_16_neon:      976.1 327.8

The speed-up compared to the C functions is 2.5 to 6 and the cortex-a57
is again 30-50% faster than the cortex-a53.

Signed-off-by: Martin Storsjö <martin@martin.st>
2016-11-14 00:10:13 +02:00
Martin Storsjö
52d196fb30 arm: vp9itxfm: Simplify txfm string comparisons
Signed-off-by: Martin Storsjö <martin@martin.st>
2016-11-14 00:10:13 +02:00
Martin Storsjö
3c9546dfaf aarch64: vp9: Add NEON itxfm routines
This work is sponsored by, and copyright, Google.

These are ported from the ARM version; thanks to the larger
amount of registers available, we can do the 16x16 and 32x32
transforms in slices 8 pixels wide instead of 4. This gives
a speedup of around 1.4x compared to the 32 bit version.

The fact that aarch64 doesn't have the same d/q register
aliasing makes some of the macros quite a bit simpler as well.

Examples of runtimes vs the 32 bit version, on a Cortex A53:
                                       ARM  AArch64
vp9_inv_adst_adst_4x4_add_neon:       90.0     87.7
vp9_inv_adst_adst_8x8_add_neon:      400.0    354.7
vp9_inv_adst_adst_16x16_add_neon:   2526.5   1827.2
vp9_inv_dct_dct_4x4_add_neon:         74.0     72.7
vp9_inv_dct_dct_8x8_add_neon:        271.0    256.7
vp9_inv_dct_dct_16x16_add_neon:     1960.7   1372.7
vp9_inv_dct_dct_32x32_add_neon:    11988.9   8088.3
vp9_inv_wht_wht_4x4_add_neon:         63.0     57.7

The speedup vs C code (2-4x) is smaller than in the 32 bit case,
mostly because the C code ends up significantly faster (around
1.6x faster, with GCC 5.4) when built for aarch64.

Examples of runtimes vs C on a Cortex A57 (for a slightly older version
of the patch):
                                A57 gcc-5.3   neon
vp9_inv_adst_adst_4x4_add_neon:       152.2   60.0
vp9_inv_adst_adst_8x8_add_neon:       948.2  288.0
vp9_inv_adst_adst_16x16_add_neon:    4830.4 1380.5
vp9_inv_dct_dct_4x4_add_neon:         153.0   58.6
vp9_inv_dct_dct_8x8_add_neon:         789.2  180.2
vp9_inv_dct_dct_16x16_add_neon:      3639.6  917.1
vp9_inv_dct_dct_32x32_add_neon:     20462.1 4985.0
vp9_inv_wht_wht_4x4_add_neon:          91.0   49.8

The asm is around factor 3-4 faster than C on the cortex-a57 and the asm
is around 30-50% faster on the a57 compared to the a53.

Signed-off-by: Martin Storsjö <martin@martin.st>
2016-11-14 00:10:13 +02:00
Diego Biurrun
800d91d348 Drop pointless void* casts 2016-11-13 18:44:01 +01:00
Diego Biurrun
d316f9cefc aac: Drop pointless cast 2016-11-13 18:44:00 +01:00
Diego Biurrun
3b50dbc51f ratecontrol: Use correct function pointer casts instead of void*
libavcodec/ratecontrol.c:120:9: warning: ISO C forbids initialization between function pointer and ‘void *’ [-Wpedantic]
libavcodec/ratecontrol.c:121:9: warning: ISO C forbids initialization between function pointer and ‘void *’ [-Wpedantic]
2016-11-12 16:47:06 +01:00
Martin Storsjö
dd299a2d6d arm: vp9: Add NEON loop filters
This work is sponsored by, and copyright, Google.

The implementation tries to have smart handling of cases
where no pixels need the full filtering for the 8/16 width
filters, skipping both calculation and writeback of the
unmodified pixels in those cases. The actual effect of this
is hard to test with checkasm though, since it tests the
full filtering, and the benefit depends on how many filtered
blocks use the shortcut.

Examples of relative speedup compared to the C version, from checkasm:
                          Cortex       A7     A8     A9    A53
vp9_loop_filter_h_4_8_neon:          2.72   2.68   1.78   3.15
vp9_loop_filter_h_8_8_neon:          2.36   2.38   1.70   2.91
vp9_loop_filter_h_16_8_neon:         1.80   1.89   1.45   2.01
vp9_loop_filter_h_16_16_neon:        2.81   2.78   2.18   3.16
vp9_loop_filter_mix2_h_44_16_neon:   2.65   2.67   1.93   3.05
vp9_loop_filter_mix2_h_48_16_neon:   2.46   2.38   1.81   2.85
vp9_loop_filter_mix2_h_84_16_neon:   2.50   2.41   1.73   2.85
vp9_loop_filter_mix2_h_88_16_neon:   2.77   2.66   1.96   3.23
vp9_loop_filter_mix2_v_44_16_neon:   4.28   4.46   3.22   5.70
vp9_loop_filter_mix2_v_48_16_neon:   3.92   4.00   3.03   5.19
vp9_loop_filter_mix2_v_84_16_neon:   3.97   4.31   2.98   5.33
vp9_loop_filter_mix2_v_88_16_neon:   3.91   4.19   3.06   5.18
vp9_loop_filter_v_4_8_neon:          4.53   4.47   3.31   6.05
vp9_loop_filter_v_8_8_neon:          3.58   3.99   2.92   5.17
vp9_loop_filter_v_16_8_neon:         3.40   3.50   2.81   4.68
vp9_loop_filter_v_16_16_neon:        4.66   4.41   3.74   6.02

The speedup vs C code is around 2-6x. The numbers are quite
inconclusive though, since the checkasm test runs multiple filterings
on top of each other, so later rounds might end up with different
codepaths (different decisions on which filter to apply, based
on input pixel differences). Disabling the early-exit in the asm
doesn't give a fair comparison either though, since the C code
only does the necessary calcuations for each row.

Based on START_TIMER/STOP_TIMER wrapping around a few individual
functions, the speedup vs C code is around 4-9x.

This is pretty similar in runtime to the corresponding routines
in libvpx. (This is comparing vpx_lpf_vertical_16_neon,
vpx_lpf_horizontal_edge_8_neon and vpx_lpf_horizontal_edge_16_neon
to vp9_loop_filter_h_16_8_neon, vp9_loop_filter_v_16_8_neon
and vp9_loop_filter_v_16_16_neon - note that the naming of horizonal
and vertical is flipped between the libraries.)

In order to have stable, comparable numbers, the early exits in both
asm versions were disabled, forcing the full filtering codepath.

                           Cortex           A7      A8      A9     A53
vp9_loop_filter_h_16_8_neon:             597.2   472.0   482.4   415.0
libvpx vpx_lpf_vertical_16_neon:         626.0   464.5   470.7   445.0
vp9_loop_filter_v_16_8_neon:             500.2   422.5   429.7   295.0
libvpx vpx_lpf_horizontal_edge_8_neon:   586.5   414.5   415.6   383.2
vp9_loop_filter_v_16_16_neon:            905.0   784.7   791.5   546.0
libvpx vpx_lpf_horizontal_edge_16_neon: 1060.2   751.7   743.5   685.2

Our version is consistently faster on on A7 and A53, marginally slower on
A8, and sometimes faster, sometimes slower on A9 (marginally slower in all
three tests in this particular test run).

Signed-off-by: Martin Storsjö <martin@martin.st>
2016-11-11 14:16:42 +02:00
Diego Biurrun
f7d183f084 libxvid: Check return value of write() call
libavcodec/libxvid_rc.c:106:9: warning: ignoring return value of ‘write’, declared with attribute warn_unused_result [-Wunused-result]
2016-11-11 10:17:07 +01:00
Diego Biurrun
e5e8a26dcf libxvid: Use proper context in av_log() calls 2016-11-11 10:17:07 +01:00
Diego Biurrun
12db2832e4 libxvid: Require availability of mkstemp()
The replacement code uses tempnam(), which is dangerous.
Such a fringe feature is not worth the trouble.
2016-11-11 10:17:07 +01:00
Martin Storsjö
a67ae67083 arm: vp9: Add NEON itxfm routines
This work is sponsored by, and copyright, Google.

For the transforms up to 8x8, we can fit all the data (including
temporaries) in registers and just do a straightforward transform
of all the data. For 16x16, we do a transform of 4x16 pixels in
4 slices, using a temporary buffer. For 32x32, we transform 4x32
pixels at a time, in two steps of 4x16 pixels each.

Examples of relative speedup compared to the C version, from checkasm:
                         Cortex       A7     A8     A9    A53
vp9_inv_adst_adst_4x4_add_neon:     3.39   5.83   4.17   4.01
vp9_inv_adst_adst_8x8_add_neon:     3.79   4.86   4.23   3.98
vp9_inv_adst_adst_16x16_add_neon:   3.33   4.36   4.11   4.16
vp9_inv_dct_dct_4x4_add_neon:       4.06   6.16   4.59   4.46
vp9_inv_dct_dct_8x8_add_neon:       4.61   6.01   4.98   4.86
vp9_inv_dct_dct_16x16_add_neon:     3.35   3.44   3.36   3.79
vp9_inv_dct_dct_32x32_add_neon:     3.89   3.50   3.79   4.42
vp9_inv_wht_wht_4x4_add_neon:       3.22   5.13   3.53   3.77

Thus, the speedup vs C code is around 3-6x.

This is mostly marginally faster than the corresponding routines
in libvpx on most cores, tested with their 32x32 idct (compared to
vpx_idct32x32_1024_add_neon). These numbers are slightly in libvpx's
favour since their version doesn't clear the input buffer like ours
do (although the effect of that on the total runtime probably is
negligible.)

                           Cortex       A7       A8       A9      A53
vp9_inv_dct_dct_32x32_add_neon:    18436.8  16874.1  14235.1  11988.9
libvpx vpx_idct32x32_1024_add_neon 20789.0  13344.3  15049.9  13030.5

Only on the Cortex A8, the libvpx function is faster. On the other cores,
ours is slightly faster even though ours has got source block clearing
integrated.

Signed-off-by: Martin Storsjö <martin@martin.st>
2016-11-11 11:09:05 +02:00
Mark Thompson
fd0fae6037 pthread_frame: Unreference hw_frames_ctx on per-thread codec contexts
When decoding with threads enabled, the get_format callback will be
called with one of the per-thread codec contexts rather than with the
outer context.  If a hwaccel is in use too, this will add a reference
to the hardware frames context on that codec context, which will then
propagate to all of the other per-thread contexts for decoding.  Once
the decoder finishes, however, the per-thread contexts are not freed
normally, so these references leak.
2016-11-10 20:36:11 +00:00
Martin Storsjö
11623217e3 arm: vp9mc: Use a different helper register for PIC loads
This fixes crashes since 557c1675cf in linux PIC builds.

Previously, movrelx silently used r12 as helper register, which
doesn't work when r12 is the destination register.

Signed-off-by: Martin Storsjö <martin@martin.st>
2016-11-10 14:01:04 +02:00
Martin Storsjö
6a62795d40 aarch64: h264idct: Use the offset parameter to movrel
Signed-off-by: Martin Storsjö <martin@martin.st>
2016-11-10 11:18:22 +02:00
Martin Storsjö
557c1675cf arm: vp9mc: Minor adjustments from review of the aarch64 version
This work is sponsored by, and copyright, Google.

The speedup for the large horizontal filters is surprisingly
big on A7 and A53, while there's a minor slowdown (almost within
measurement noise) on A8 and A9.

                            Cortex    A7        A8        A9       A53
orig:
vp9_put_8tap_smooth_64h_neon:    20270.0   14447.3   19723.9   10910.9
new:
vp9_put_8tap_smooth_64h_neon:    20165.8   14466.5   19730.2   10668.8

Signed-off-by: Martin Storsjö <martin@martin.st>
2016-11-10 11:18:22 +02:00
Martin Storsjö
383d96aa22 aarch64: vp9: Add NEON optimizations of VP9 MC functions
This work is sponsored by, and copyright, Google.

These are ported from the ARM version; it is essentially a 1:1
port with no extra added features, but with some hand tuning
(especially for the plain copy/avg functions). The ARM version
isn't very register starved to begin with, so there's not much
to be gained from having more spare registers here - we only
avoid having to clobber callee-saved registers.

Examples of runtimes vs the 32 bit version, on a Cortex A53:
                                     ARM   AArch64
vp9_avg4_neon:                      27.2      23.7
vp9_avg8_neon:                      56.5      54.7
vp9_avg16_neon:                    169.9     167.4
vp9_avg32_neon:                    585.8     585.2
vp9_avg64_neon:                   2460.3    2294.7
vp9_avg_8tap_smooth_4h_neon:       132.7     125.2
vp9_avg_8tap_smooth_4hv_neon:      478.8     442.0
vp9_avg_8tap_smooth_4v_neon:       126.0      93.7
vp9_avg_8tap_smooth_8h_neon:       241.7     234.2
vp9_avg_8tap_smooth_8hv_neon:      690.9     646.5
vp9_avg_8tap_smooth_8v_neon:       245.0     205.5
vp9_avg_8tap_smooth_64h_neon:    11273.2   11280.1
vp9_avg_8tap_smooth_64hv_neon:   22980.6   22184.1
vp9_avg_8tap_smooth_64v_neon:    11549.7   10781.1
vp9_put4_neon:                      18.0      17.2
vp9_put8_neon:                      40.2      37.7
vp9_put16_neon:                     97.4      99.5
vp9_put32_neon/armv8:              346.0     307.4
vp9_put64_neon/armv8:             1319.0    1107.5
vp9_put_8tap_smooth_4h_neon:       126.7     118.2
vp9_put_8tap_smooth_4hv_neon:      465.7     434.0
vp9_put_8tap_smooth_4v_neon:       113.0      86.5
vp9_put_8tap_smooth_8h_neon:       229.7     221.6
vp9_put_8tap_smooth_8hv_neon:      658.9     621.3
vp9_put_8tap_smooth_8v_neon:       215.0     187.5
vp9_put_8tap_smooth_64h_neon:    10636.7   10627.8
vp9_put_8tap_smooth_64hv_neon:   21076.8   21026.9
vp9_put_8tap_smooth_64v_neon:     9635.0    9632.4

These are generally about as fast as the corresponding ARM
routines on the same CPU (at least on the A53), in most cases
marginally faster.

The speedup vs C code is pretty much the same as for the 32 bit
case; on the A53 it's around 6-13x for ther larger 8tap filters.
The exact speedup varies a little, since the C versions generally
don't end up exactly as slow/fast as on 32 bit.

Signed-off-by: Martin Storsjö <martin@martin.st>
2016-11-10 11:15:56 +02:00
Martin Storsjö
a4cfcddcb0 vp9: Make the subpel filters non-static
Make them aligned, to allow efficient access to them from simd.

Signed-off-by: Martin Storsjö <martin@martin.st>
2016-11-10 11:05:57 +02:00
Anton Khirnov
84f225684c pthread_frame: properly propagate the hw frame context across frame threads 2016-11-10 09:00:11 +01:00
Diego Biurrun
72a19f4013 mpegaudiodsp: aarch64: Adjust function prototype after 2caa93b813 2016-11-10 00:13:48 +01:00
Diego Biurrun
67deba8a41 Use avpriv_report_missing_feature() where appropriate 2016-11-08 17:54:34 +01:00
Vittorio Giovara
47a795727f hevc: Support extradata changes from multiple stsd
Signed-off-by: Vittorio Giovara <vittorio.giovara@gmail.com>
2016-11-08 11:22:29 -05:00
Vittorio Giovara
2fe30b4743 hevc: Allow parsing external extradata buffers 2016-11-08 11:22:29 -05:00
Vittorio Giovara
5be2153111 hevc: Move hevc_decode_extradata before frame decoding
Avoids a forward-declaration in the following commit.

Signed-off-by: Vittorio Giovara <vittorio.giovara@gmail.com>
2016-11-08 11:22:29 -05:00
Vittorio Giovara
bed2c4b265 lavc: Add hevc main10 profile to avconv cli 2016-11-08 11:22:29 -05:00
Vittorio Giovara
17dac56b8f lavu: Rename ycgco color space appropriately
Planes are ordered as the name suggests now.

Signed-off-by: Vittorio Giovara <vittorio.giovara@gmail.com>
2016-11-08 11:22:29 -05:00
Diego Biurrun
0361e4dcb4 h264_qpel: x86: Move function with only one instance out of template macro
libavcodec/x86/h264_qpel.c:392:785: warning: unused function 'ff_avg_h264_qpel8or16_hv1_lowpass_mmxext' [-Wunused-function]
2016-11-08 17:21:02 +01:00
Andreas Cadhalpun
43de8b328b lzf: update pointer p after realloc
This fixes heap-use-after-free detected by AddressSanitizer.

Signed-off-by: Andreas Cadhalpun <Andreas.Cadhalpun@googlemail.com>
Signed-off-by: Luca Barbato <lu_zero@gentoo.org>
2016-11-07 22:42:00 +01:00
Anton Khirnov
4ab61cd983 qsv{enc,dec}: extend the internal frame allocator
Handle the internal frame requests, which is required by the HEVC
encoding plugin.

Signed-off-by: Maxym Dmytrychenko <maxym.dmytrychenko@intel.com>
2016-11-07 12:48:00 +01:00
Anton Khirnov
00aeedd841 qsv{dec,enc}: use a struct as a memory id with internal memory allocator
This will allow implementing the allocator more fully, which is needed
by the HEVC encoder plugin with video memory input.

Signed-off-by: Maxym Dmytrychenko <maxym.dmytrychenko@intel.com>
2016-11-07 12:47:54 +01:00
Anton Khirnov
404e51478e qsv{dec,enc}: always use an internal mfxFrameSurface1
For encoding, this avoids modifying the input surface, which we are not
allowed to do.
This will also be useful in the following commits.

Signed-off-by: Maxym Dmytrychenko <maxym.dmytrychenko@intel.com>
2016-11-07 12:47:46 +01:00
Hendrik Leppkes
fabfbfe571 dxva2: fix surface selection when compiled with both d3d11va and dxva2
Fixes a regression introduced in
be630b1e08

Signed-off-by: Anton Khirnov <anton@khirnov.net>
2016-11-07 10:05:12 +01:00
Derek Buitenhuis
db0b3dccb3 libx265: Add option to force IDR frames
This is in the same the same vein as 380146924e.

Signed-off-by: Derek Buitenhuis <derek.buitenhuis@gmail.com>
Signed-off-by: Martin Storsjö <martin@martin.st>
2016-11-07 10:16:10 +02:00
Diego Biurrun
3cba09e522 x86: Drop stray semicolons after function definitions
libavcodec/x86/rv40dsp_init.c:97:2: warning: ISO C does not allow extra ‘;’ outside of a function [-Wpedantic]
libavcodec/x86/vp9dsp_init.c:94:40: warning: ISO C does not allow extra ‘;’ outside of a function [-Wpedantic]
2016-11-05 12:41:45 +01:00
Martin Storsjö
392caa65df arm: vp9mc: Insert a literal pool at the middle of the file
This fixes errors like this when building non-pic binaries with armv6
as baseline:

Error: invalid literal constant: pool needs to be closer

Signed-off-by: Martin Storsjö <martin@martin.st>
2016-11-04 21:37:53 +02:00
Diego Biurrun
67351924fa Drop unreachable break and return statements 2016-11-03 20:17:12 +01:00
Diego Biurrun
6354957a95 dnxhdenc: Have function pointer prototype match implementation
libavcodec/dnxhdenc.c(326) : warning C4028: formal parameter 1 different from declaration
libavcodec/dnxhdenc.c(329) : warning C4028: formal parameter 1 different from declaration
2016-11-03 17:43:55 +01:00
Diego Biurrun
c778eb15b8 pixblockdsp: Have function pointer prototype match implementation
libavcodec/pixblockdsp.c(58) : warning C4028: formal parameter 1 different from declaration
libavcodec/pixblockdsp.c(63) : warning C4028: formal parameter 1 different from declaration
libavcodec/pixblockdsp.c(66) : warning C4028: formal parameter 1 different from declaration
2016-11-03 17:43:55 +01:00
Diego Biurrun
99ddeddc7f ituh263dec: Have function signature match across declaration and definition
libavcodec/ituh263dec.c(215) : warning C4028: formal parameter 1 different from declaration
libavcodec/ituh263dec.c(215) : warning C4028: formal parameter 2 different from declaration
2016-11-03 17:43:55 +01:00
Diego Biurrun
13fcdfb976 svq3: Drop unused function dctcoef_get()
libavcodec/svq3.c:627:29: warning: unused function 'dctcoef_get' [-Wunused-function]
2016-11-03 15:52:12 +01:00
Diego Biurrun
ee59f05408 intrax8: Have function signature match across declaration and definition
libavcodec/intrax8.c(776) : warning C4028: formal parameter 1 different from declaration
2016-11-03 15:50:48 +01:00
Martin Storsjö
1a469a5e42 options_table: Remove a now unnecessary include of config.h
The include of config.h was added in 2012 in 1d9c2dc8, due to
the use of CONFIG_SNOW_ENCODER ifdefs within options_table.h.
When the snow codec was dropped later (in a0c5917f8 in 2013),
this include no longer served any purpose.

options_table.h is included in builds for the host as well, when
building documentation. config.h should not be included in code
that is built for the host, since it can contain workarounds
for the target compiler/environment, like adding a missing define
of restrict, defining getenv(x) to NULL for environments that lack
getenv.

The seemingly innocent include reordering in 2025d37871 broke
builds that have getenv(x) defined to NULL in config.h (Windows CE
and Windows Phone/RT), since libavcodec/options_table.h include
config.h, while libavformat/options_table.h end up bringing in
more system headers, and those system headers can contain a proper
definition of getenv, which clash with the getenv define in config.h.
This was avoided earlier as long as libavformat/options_table.h (or
avformat.h) was included before libavcodec/options_table.h.

This fixes builds for Windows Phone/RT and CE.

Signed-off-by: Martin Storsjö <martin@martin.st>
2016-11-03 11:25:50 +02:00
Martin Storsjö
ffbd1d2b00 arm: vp9: Add NEON optimizations of VP9 MC functions
This work is sponsored by, and copyright, Google.

The filter coefficients are signed values, where the product of the
multiplication with one individual filter coefficient doesn't
overflow a 16 bit signed value (the largest filter coefficient is
127). But when the products are accumulated, the resulting sum can
overflow the 16 bit signed range. Instead of accumulating in 32 bit,
we accumulate the largest product (either index 3 or 4) last with a
saturated addition.

(The VP8 MC asm does something similar, but slightly simpler, by
accumulating each half of the filter separately. In the VP9 MC
filters, each half of the filter can also overflow though, so the
largest component has to be handled individually.)

Examples of relative speedup compared to the C version, from checkasm:
                       Cortex      A7     A8     A9    A53
vp9_avg4_neon:                   1.71   1.15   1.42   1.49
vp9_avg8_neon:                   2.51   3.63   3.14   2.58
vp9_avg16_neon:                  2.95   6.76   3.01   2.84
vp9_avg32_neon:                  3.29   6.64   2.85   3.00
vp9_avg64_neon:                  3.47   6.67   3.14   2.80
vp9_avg_8tap_smooth_4h_neon:     3.22   4.73   2.76   4.67
vp9_avg_8tap_smooth_4hv_neon:    3.67   4.76   3.28   4.71
vp9_avg_8tap_smooth_4v_neon:     5.52   7.60   4.60   6.31
vp9_avg_8tap_smooth_8h_neon:     6.22   9.04   5.12   9.32
vp9_avg_8tap_smooth_8hv_neon:    6.38   8.21   5.72   8.17
vp9_avg_8tap_smooth_8v_neon:     9.22  12.66   8.15  11.10
vp9_avg_8tap_smooth_64h_neon:    7.02  10.23   5.54  11.58
vp9_avg_8tap_smooth_64hv_neon:   6.76   9.46   5.93   9.40
vp9_avg_8tap_smooth_64v_neon:   10.76  14.13   9.46  13.37
vp9_put4_neon:                   1.11   1.47   1.00   1.21
vp9_put8_neon:                   1.23   2.17   1.94   1.48
vp9_put16_neon:                  1.63   4.02   1.73   1.97
vp9_put32_neon:                  1.56   4.92   2.00   1.96
vp9_put64_neon:                  2.10   5.28   2.03   2.35
vp9_put_8tap_smooth_4h_neon:     3.11   4.35   2.63   4.35
vp9_put_8tap_smooth_4hv_neon:    3.67   4.69   3.25   4.71
vp9_put_8tap_smooth_4v_neon:     5.45   7.27   4.49   6.52
vp9_put_8tap_smooth_8h_neon:     5.97   8.18   4.81   8.56
vp9_put_8tap_smooth_8hv_neon:    6.39   7.90   5.64   8.15
vp9_put_8tap_smooth_8v_neon:     9.03  11.84   8.07  11.51
vp9_put_8tap_smooth_64h_neon:    6.78   9.48   4.88  10.89
vp9_put_8tap_smooth_64hv_neon:   6.99   8.87   5.94   9.56
vp9_put_8tap_smooth_64v_neon:   10.69  13.30   9.43  14.34

For the larger 8tap filters, the speedup vs C code is around 5-14x.

This is significantly faster than libvpx's implementation of the same
functions, at least when comparing the put_8tap_smooth_64 functions
(compared to vpx_convolve8_horiz_neon and vpx_convolve8_vert_neon from
libvpx).

Absolute runtimes from checkasm:
                          Cortex      A7        A8        A9       A53
vp9_put_8tap_smooth_64h_neon:    20150.3   14489.4   19733.6   10863.7
libvpx vpx_convolve8_horiz_neon: 52623.3   19736.4   21907.7   25027.7

vp9_put_8tap_smooth_64v_neon:    14455.0   12303.9   13746.4    9628.9
libvpx vpx_convolve8_vert_neon:  42090.0   17706.2   17659.9   16941.2

Thus, on the A9, the horizontal filter is only marginally faster than
libvpx, while our version is significantly faster on the other cores,
and the vertical filter is significantly faster on all cores. The
difference is especially large on the A7.

The libvpx implementation does the accumulation in 32 bit, which
probably explains most of the differences.

Signed-off-by: Martin Storsjö <martin@martin.st>
2016-11-03 09:35:38 +02:00
Martin Storsjö
2e55e26b40 vp9: Flip the order of arguments in MC functions
This makes it match the pattern already used for VP8 MC functions.

This also makes the signature match ffmpeg's version of these
functions, easing porting of code in both directions.

Signed-off-by: Martin Storsjö <martin@martin.st>
2016-11-03 09:12:02 +02:00