1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
Commit Graph

37 Commits

Author SHA1 Message Date
Xu Jun
3c7cad69f2 dnn_backend_native_layer_conv2d.c:Add mutithread function
Use pthread to multithread dnn_execute_layer_conv2d.
Can be tested with command "./ffmpeg_g -i input.png -vf \
format=yuvj420p,dnn_processing=dnn_backend=native:model= \
espcn.model:input=x:output=y:options=conv2d_threads=23 \
 -y sr_native.jpg -benchmark"

before patch: utime=11.238s stime=0.005s rtime=11.248s
after patch:  utime=20.817s stime=0.047s rtime=1.051s
on my 3900X 12c24t @4.2GHz

About the increase of utime, it's because that CPU HyperThreading
technology makes logical cores twice of physical cores while cpu's
counting performance improves less than double. And utime sums
all cpu's logical cores' runtime. As a result, using threads num
near cpu's logical core's number will double utime, while reduce
rtime less than half for HyperThreading CPUs.

Signed-off-by: Xu Jun <xujunzz@sjtu.edu.cn>
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
2020-09-09 14:24:36 +08:00
Ting Fu
c8ba0daf8d dnn/native: add log error message
Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-08-25 13:03:46 +08:00
Mingyu Yin
3477feb643 dnn_backend_native_layer_mathbinary: add floormod support
Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
2020-08-24 09:09:11 +08:00
Mingyu Yin
4ed6bca4ae dnn_backend_native_layer_mathunary: add round support
Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
Reviewed-by: Guo, Yejun <yejun.guo@intel.com>
2020-08-12 10:30:46 +08:00
Ting Fu
de5cb6c060 FATE/dnn: add unit test for dnn avgpool layer
'make fate-dnn-layer-avgpool' to run the test

Signed-off-by: Ting Fu <ting.fu@intel.com>
Reviewed-by: Guo, Yejun <yejun.guo@intel.com>
2020-08-10 16:37:43 +08:00
Mingyu Yin
fab00b0ae0 dnn_backend_native_layer_mathunary: add floor support
It can be tested with the model generated with below python script:

import tensorflow as tf
import os
import numpy as np
import imageio
from tensorflow.python.framework import graph_util
name = 'floor'

pb_file_path = os.getcwd()
if not os.path.exists(pb_file_path+'/{}_savemodel/'.format(name)):
    os.mkdir(pb_file_path+'/{}_savemodel/'.format(name))

with tf.Session(graph=tf.Graph()) as sess:
    in_img = imageio.imread('detection.jpg')
    in_img = in_img.astype(np.float32)
    in_data = in_img[np.newaxis, :]
    input_x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
    y_ = tf.math.floor(input_x*255)/255
    y = tf.identity(y_, name='dnn_out')
    sess.run(tf.global_variables_initializer())
    constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])

    with tf.gfile.FastGFile(pb_file_path+'/{}_savemodel/model.pb'.format(name), mode='wb') as f:
        f.write(constant_graph.SerializeToString())

    print("model.pb generated, please in ffmpeg path use\n \n \
    python tools/python/convert.py {}_savemodel/model.pb --outdir={}_savemodel/ \n \nto generate model.model\n".format(name,name))

    output = sess.run(y, feed_dict={ input_x: in_data})
    imageio.imsave("out.jpg", np.squeeze(output))

    print("To verify, please ffmpeg path use\n \n \
    ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow -f framemd5 {}_savemodel/tensorflow_out.md5\n  \
    or\n \
    ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow {}_savemodel/out_tensorflow.jpg\n \nto generate output result of tensorflow model\n".format(name, name, name, name))

    print("To verify, please ffmpeg path use\n \n \
    ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native -f framemd5 {}_savemodel/native_out.md5\n  \
    or \n \
    ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native {}_savemodel/out_native.jpg\n \nto generate output result of native model\n".format(name, name, name, name))

Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
2020-08-07 10:34:22 +08:00
Mingyu Yin
9fbdd5454b dnn_backend_native_layer_mathunary: add ceil support
It can be tested with the model generated with below python script:

import tensorflow as tf
import os
import numpy as np
import imageio
from tensorflow.python.framework import graph_util
name = 'ceil'

pb_file_path = os.getcwd()
if not os.path.exists(pb_file_path+'/{}_savemodel/'.format(name)):
    os.mkdir(pb_file_path+'/{}_savemodel/'.format(name))

with tf.Session(graph=tf.Graph()) as sess:
    in_img = imageio.imread('detection.jpg')
    in_img = in_img.astype(np.float32)
    in_data = in_img[np.newaxis, :]
    input_x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
    y = tf.math.ceil( input_x, name='dnn_out')
    sess.run(tf.global_variables_initializer())
    constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])

    with tf.gfile.FastGFile(pb_file_path+'/{}_savemodel/model.pb'.format(name), mode='wb') as f:
        f.write(constant_graph.SerializeToString())

    print("model.pb generated, please in ffmpeg path use\n \n \
    python tools/python/convert.py ceil_savemodel/model.pb --outdir=ceil_savemodel/ \n \n \
    to generate model.model\n")

    output = sess.run(y, feed_dict={ input_x: in_data})
    imageio.imsave("out.jpg", np.squeeze(output))

    print("To verify, please ffmpeg path use\n \n \
    ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model=ceil_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow -f framemd5 ceil_savemodel/tensorflow_out.md5\n \n \
    to generate output result of tensorflow model\n")

    print("To verify, please ffmpeg path use\n \n \
    ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model=ceil_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native -f framemd5 ceil_savemodel/native_out.md5\n \n \
    to generate output result of native model\n")

Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
Reviewed-by: Guo, Yejun <yejun.guo@intel.com>
2020-08-04 19:56:54 +08:00
Ting Fu
dbf66b9e0e tests/dnn/mathunary: fix the issue of NAN
When one of output[i] & expected_output is NAN, the unit test will always pass.

Signed-off-by: Ting Fu <ting.fu@intel.com>
Reviewed-by: Guo, Yejun <yejun.guo@intel.com>
2020-07-09 09:34:44 +08:00
Ting Fu
57ea0483af dnn-layer-math-unary-test: add unit test for atanh
Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-07-06 12:45:14 +08:00
Ting Fu
52d2e16665 dnn-layer-math-unary-test: add unit test for acosh
Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-07-06 12:45:14 +08:00
Ting Fu
33374bdbd8 dnn-layer-math-unary-test: add unit test for asinh
Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-07-06 12:45:14 +08:00
Ting Fu
0de5043060 dnn-layer-math-unary-test: add unit test for tanh
Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-07-06 12:45:14 +08:00
Ting Fu
c5de77e33c dnn-layer-math-unary-test: add unit test for cosh
Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-07-06 12:45:14 +08:00
Ting Fu
85c0608c6b dnn-layer-math-unary-test: add unit test for sinh
Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-07-06 12:45:14 +08:00
Ting Fu
24d1781cbd dnn-layer-math-unary-test: add unit test for atan
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
2020-06-25 08:41:50 +08:00
Ting Fu
130c600144 dnn-layer-math-unary-test: add unit test for acos
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
2020-06-25 08:41:50 +08:00
Ting Fu
057f6ee7f4 dnn-layer-math-unary-test: add unit test for asin
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
2020-06-25 08:41:50 +08:00
Ting Fu
3ac2f7ccd7 dnn-layer-mathunary-test: add unit test for tan
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
2020-06-11 11:10:51 +08:00
Ting Fu
dd3fe3e77c dnn-layer-mathunary-test: add unit test for cos
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
2020-06-11 11:10:51 +08:00
Ting Fu
3f7c5a375b dnn-layer-mathunary-test: add unit test for sin
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
2020-06-11 11:10:51 +08:00
Ting Fu
c51b46e5dd dnn-layer-mathunary-test: add unit test for abs
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
2020-05-28 11:04:21 +08:00
Guo, Yejun
6fd61234d5 dnn-layer-mathbinary-test: add unit test for minimum
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
2020-05-08 15:22:44 +08:00
Martin Storsjö
f4d8fad802 dnn-layer-mathbinary-test: Fix tests for cases with extra intermediate precision
This fixes tests on 32 bit x86 mingw with clang, which uses x87
fpu by default.

In this setup, while the get_expected function is declared to
return float, the compiler is (especially given the optimization
flags set) free to keep the intermediate values (in this case,
the return value from the inlined function) in higher precision.

This results in the situation where 7.28 (which actually, as
a float, ends up as 7.2800002098), multiplied by 100, is
728.000000 when really forced into a 32 bit float, but 728.000021
when kept with higher intermediate precision.

For the multiplication case, a more suitable epsilon would e.g.
be 2*FLT_EPSILON*fabs(expected_output), but just increase the
current hardcoded threshold for now.

Signed-off-by: Martin Storsjö <martin@martin.st>
2020-04-24 14:41:06 +03:00
Guo, Yejun
2e38c63630 dnn-layer-mathbinary-test: add unit test for divide
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
2020-04-22 13:15:09 +08:00
Guo, Yejun
265b5bd324 dnn-layer-mathbinary-test: add unit test for 'mul'
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
2020-04-22 13:14:55 +08:00
Guo, Yejun
17006196a6 dnn-layer-mathbinary-test: add unit test for add
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
2020-04-22 13:14:39 +08:00
Guo, Yejun
bbc64799dc dnn-layer-mathbinary-test: add unit test for subtraction
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
2020-04-07 11:04:40 +08:00
Guo, Yejun
dff39ea9f0 dnn: add tf.nn.conv2d support for native model
Unlike other tf.*.conv2d layers, tf.nn.conv2d does not create many
nodes (within a scope) in the graph, it just acts like other layers.
tf.nn.conv2d only creates one node in the graph, and no internal
nodes such as 'kernel' are created.

The format of native model file is also changed, a flag named
has_bias is added, so change the version number.

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
2019-10-30 10:31:55 -03:00
Zhao Zhili
11cfff04ed FATE/dnn: add .gitignore
Reviewed-by: Guo, Yejun <yejun.guo@intel.com>
2019-10-23 09:58:17 -03:00
Guo, Yejun
3fd5ac7e92 avfilter/dnn: unify the layer execution function in native mode
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
2019-10-15 18:56:25 -03:00
Zhao Zhili
7c145b6441 FATE/dnn: fix stack buffer overflow
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
2019-10-04 09:58:22 -03:00
Guo, Yejun
9ae42c130c FATE/dnn: add unit test for layer maximum
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
2019-09-20 10:57:23 -03:00
Guo, Yejun
b766a13dba FATE/dnn: add unit test for dnn depth_to_space layer
'make fate-dnn-layer-depth2space' to run the test

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
2019-09-19 11:29:57 -03:00
Guo, Yejun
24f507301b FATE/dnn: add unit test for dnn conv2d layer
'make fate-dnn-layer-conv2d' to run the test

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
2019-09-19 11:21:38 -03:00
Guo, Yejun
09a455a246 dnn: introduce dnn operand (in c code) to hold operand infos within network
the info can be saved in dnn operand object without regenerating again and again,
and it is also needed for layer split/merge, and for memory reuse.

to make things step by step, this patch just focuses on c code,
the change within python script will be added later.

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
2019-08-30 11:41:30 -03:00
Guo, Yejun
d0fa1a58da FATE/dnn: let fate/dnn tests depend on ffmpeg static libraries
background:
DNN (deep neural network) is a sub module of libavfilter, and FATE/dnn
is unit test for the DNN module, one unit test for one dnn layer.
The unit tests are not based on the APIs exported by libavfilter,
they just directly call into the functions within DNN submodule.

There is an issue when run the following command:
build$ ../ffmpeg/configure --disable-static --enable-shared
make
make fate-dnn-layer-pad

And part of error message:
tests/dnn/dnn-layer-pad-test.o: In function `test_with_mode_symmetric':
/work/media/ffmpeg/build/src/tests/dnn/dnn-layer-pad-test.c:73: undefined reference to `dnn_execute_layer_pad'

The root cause is that function dnn_execute_layer_pad is a LOCAL symbol
in libavfilter.so, and so the linker could not find it when build dnn-layer-pad-test.
To check it, just run: readelf -s libavfilter/libavfilter.so | grep dnn

So, add dependency in fate/dnn Makefile with ffmpeg static libraries.
This is the same method used in fate/checkasm

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
2019-08-19 11:37:16 -03:00
Guo, Yejun
3805aae479 fate: add unit test for dnn-layer-pad
'make fate-dnn-layer-pad' to run the test

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
2019-07-29 12:34:19 -03:00