1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
Commit Graph

8457 Commits

Author SHA1 Message Date
Paul B Mahol
d363afb30e avfilter/vf_tinterlace: fix mergex2, first frame is always considered odd 2020-07-17 13:53:55 +02:00
Paul B Mahol
24fea4d09b avfilter/vf_tinterlace: use frame counter from lavfi
Remove internal counter.
2020-07-17 13:53:55 +02:00
leozhang
fe591393cd avfilter/vf_bilateral: remove useless memcpy
Signed-off-by: leozhang <leozhang@qiyi.com>
2020-07-17 13:53:22 +02:00
Paul B Mahol
241cdded0f avfilter/vf_bilateral: stop using sigmaS as percent of width/height 2020-07-17 13:53:22 +02:00
James Almer
320694ff84 x86/vf_blend: fix warnings about trailing empty parameters
Finishes fixing ticket #8771

Signed-off-by: James Almer <jamrial@gmail.com>
2020-07-12 11:30:23 -03:00
Jun Zhao
04037e2966 lavfi/setpts: fix setpts/asetpts option dump error
fix the command ffmpeg -h filter=setpts/asetpts both dump the expr
option with "FVA" flags.

Reviewed-by: Paul B Mahol <onemda@gmail.com>
Signed-off-by: Jun Zhao <barryjzhao@tencent.com>
2020-07-12 08:11:42 +08:00
Ben Clayton
4dab04622a libavfilter/glslang: Remove unused header
The <glslang/Include/revision.h> include was not used, and revision.h has
been removed from glslang master.
See: https://github.com/KhronosGroup/glslang/pull/2277
2020-07-11 13:01:33 +01:00
Paul B Mahol
6f84e92172 avfilter/vf_chromanr: move thres calculation to filter_frame() 2020-07-10 23:09:19 +02:00
Limin Wang
f9277cd796 avfilter/vf_showinfo: add dump_s12m_timecode() helper function
Signed-off-by: Limin Wang <lance.lmwang@gmail.com>
2020-07-08 23:14:04 +08:00
Limin Wang
3ede8acba6 avfilter/vf_showinfo: check sd->size before reference the sd->data
Or it'll cause null pointer dereference if size < sizeof(uint32_t), also
in case tc[0] > 3, the code will report error directly.

Signed-off-by: Limin Wang <lance.lmwang@gmail.com>
2020-07-08 23:12:48 +08:00
Paul B Mahol
6cdddb773f avfilter: add chromanr video filter 2020-07-08 15:23:43 +02:00
Valery Kot
855d51bf48 avfilter/vf_edgedetect: properly implement double_threshold()
Important part of this algorithm is the double threshold step: pixels
above "high" threshold being kept, pixels below "low" threshold dropped,
pixels in between (weak edges) are kept if they are neighboring "high"
pixels.

The weak edge check uses a neighboring context and should not be applied
on the plane's border. The condition was incorrect and has been fixed in
the commit.

Signed-off-by: Andriy Gelman <andriy.gelman@gmail.com>
Reviewed-by: Andriy Gelman <andriy.gelman@gmail.com>
2020-07-06 23:20:53 -04:00
Reimar Döffinger
584f396132 dnn_backend_native: Add overflow check for length calculation.
We should not silently allocate an incorrect sized buffer.
Fixes trac issue #8718.

Signed-off-by: Reimar Döffinger <Reimar.Doeffinger@gmx.de>
Reviewed-by: Michael Niedermayer <michael@niedermayer.cc>
Reviewed-by: Guo, Yejun <yejun.guo@intel.com>
2020-07-06 20:22:30 +08:00
Ting Fu
c0cdeea0ee dnn_backend_native_layer_mathunary: add atanh support
It can be tested with the model generated with below python script:

import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')

please uncomment the part you want to test

x_sinh_1 = tf.sinh(x)
x_out = tf.divide(x_sinh_1, 1.176) # sinh(1.0)

x_cosh_1 = tf.cosh(x)
x_out = tf.divide(x_cosh_1, 1.55) # cosh(1.0)

x_tanh_1 = tf.tanh(x)
x__out = tf.divide(x_tanh_1, 0.77) # tanh(1.0)

x_asinh_1 = tf.asinh(x)
x_out = tf.divide(x_asinh_1, 0.89) # asinh(1.0/1.1)

x_acosh_1 = tf.add(x, 1.1)
x_acosh_2 = tf.acosh(x_acosh_1) # accept (1, inf)
x_out = tf.divide(x_acosh_2, 1.4) # acosh(2.1)

x_atanh_1 = tf.divide(x, 1.1)
x_atanh_2 = tf.atanh(x_atanh_1) # accept (-1, 1)
x_out = tf.divide(x_atanh_2, 1.55) # atanhh(1.0/1.1)

y = tf.identity(x_out, name='dnn_out') #please only preserve the x_out you want to test

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-07-06 12:45:14 +08:00
Ting Fu
cd2e3a864d dnn_backend_native_layer_mathunary: add acosh support
Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-07-06 12:45:14 +08:00
Ting Fu
9d14b38d9d dnn_backend_native_layer_mathunary: add asinh support
Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-07-06 12:45:14 +08:00
Ting Fu
ea71e731f4 dnn_backend_native_layer_mathunary: add tanh support
Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-07-06 12:45:14 +08:00
Ting Fu
62fc7e3035 dnn_backend_native_layer_mathunary: add cosh support
Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-07-06 12:45:14 +08:00
Ting Fu
91b4037101 dnn_backend_native_layer_mathunary: add sinh support
Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-07-06 12:45:14 +08:00
Limin Wang
49054fe94c FATE: fix colorbalance fate test failed on x86_32
floating point precision will cause rgb*max generate different value on
x86_32 and x86_64. have pass fate test on x86_32 and x86_64 by using
lrintf to get the nearest integral value for rgb * max before av_clip.

Reviewed-by:   Paul B Mahol <onemda@gmail.com>
Signed-off-by: Limin Wang <lance.lmwang@gmail.com>
2020-07-02 21:12:37 +08:00
Guo, Yejun
9bcf2aa477 vf_dnn_processing.c: add dnn backend openvino
We can try with the srcnn model from sr filter.
1) get srcnn.pb model file, see filter sr
2) convert srcnn.pb into openvino model with command:
python mo_tf.py --input_model srcnn.pb --data_type=FP32 --input_shape [1,960,1440,1] --keep_shape_ops

See the script at https://github.com/openvinotoolkit/openvino/tree/master/model-optimizer
We'll see srcnn.xml and srcnn.bin at current path, copy them to the
directory where ffmpeg is.

I have also uploaded the model files at https://github.com/guoyejun/dnn_processing/tree/master/models

3) run with openvino backend:
ffmpeg -i input.jpg -vf format=yuv420p,scale=w=iw*2:h=ih*2,dnn_processing=dnn_backend=openvino:model=srcnn.xml:input=x:output=srcnn/Maximum -y srcnn.ov.jpg
(The input.jpg resolution is 720*480)

Also copy the logs on my skylake machine (4 cpus) locally with openvino backend
and tensorflow backend. just for your information.

$ time ./ffmpeg -i 480p.mp4 -vf format=yuv420p,scale=w=iw*2:h=ih*2,dnn_processing=dnn_backend=tensorflow:model=srcnn.pb:input=x:output=y -y srcnn.tf.mp4
…
frame=  343 fps=2.1 q=31.0 Lsize=    2172kB time=00:00:11.76 bitrate=1511.9kbits/s speed=0.0706x
video:1973kB audio:187kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.517637%
[aac @ 0x2f5db80] Qavg: 454.353
real    2m46.781s
user    9m48.590s
sys     0m55.290s

$ time ./ffmpeg -i 480p.mp4 -vf format=yuv420p,scale=w=iw*2:h=ih*2,dnn_processing=dnn_backend=openvino:model=srcnn.xml:input=x:output=srcnn/Maximum -y srcnn.ov.mp4
…
frame=  343 fps=4.0 q=31.0 Lsize=    2172kB time=00:00:11.76 bitrate=1511.9kbits/s speed=0.137x
video:1973kB audio:187kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.517640%
[aac @ 0x31a9040] Qavg: 454.353
real    1m25.882s
user    5m27.004s
sys     0m0.640s

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
2020-07-02 09:56:55 +08:00
Guo, Yejun
ff37ebaf30 dnn: add openvino as one of dnn backend
OpenVINO is a Deep Learning Deployment Toolkit at
https://github.com/openvinotoolkit/openvino, it supports CPU, GPU
and heterogeneous plugins to accelerate deep learning inferencing.

Please refer to https://github.com/openvinotoolkit/openvino/blob/master/build-instruction.md
to build openvino (c library is built at the same time). Please add
option -DENABLE_MKL_DNN=ON for cmake to enable CPU path. The header
files and libraries are installed to /usr/local/deployment_tools/inference_engine/
with default options on my system.

To build FFmpeg with openvion, take my system as an example, run with:
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/deployment_tools/inference_engine/lib/intel64/:/usr/local/deployment_tools/inference_engine/external/tbb/lib/
$ ../ffmpeg/configure --enable-libopenvino --extra-cflags=-I/usr/local/deployment_tools/inference_engine/include/ --extra-ldflags=-L/usr/local/deployment_tools/inference_engine/lib/intel64
$ make

Here are the features provided by OpenVINO inference engine:
- support more DNN model formats
It supports TensorFlow, Caffe, ONNX, MXNet and Kaldi by converting them
into OpenVINO format with a python script. And torth model
can be first converted into ONNX and then to OpenVINO format.

see the script at https://github.com/openvinotoolkit/openvino/tree/master/model-optimizer/mo.py
which also does some optimization at model level.

- optimize at inference stage
It optimizes for X86 CPUs with SSE, AVX etc.

It also optimizes based on OpenCL for Intel GPUs.
(only Intel GPU supported becuase Intel OpenCL extension is used for optimization)

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
2020-07-02 09:36:34 +08:00
Paul B Mahol
cca982ee01 avfilter/vf_colorbalance: remove wrong addition 2020-06-29 14:52:37 +02:00
Limin Wang
12c42c709e avfilter/vf_showinfo: add a \n for end of ERROR and WARNNING log
Note for info level, one extra \n will be print after the log.

Reviewed-by:   Paul B Mahol <onemda@gmail.com>
Signed-off-by: Limin Wang <lance.lmwang@gmail.com>
2020-06-28 09:00:28 +08:00
exwm
32d6fe23b6 avfilter/zoompan: add in_time variable
Currently, the zoompan filter exposes a 'time' variable (missing from docs) for use in
the 'zoom', 'x', and 'y' expressions. This variable is perhaps better named
'out_time' as it represents the timestamp in seconds of each output frame
produced by zoompan. This patch adds aliases 'out_time' and 'ot' for 'time'.

This patch also adds an 'in_time' (alias 'it') variable that provides access
to the timestamp in seconds of each input frame to the zoompan filter.
This helps to design zoompan filters that depend on the input video timestamps.
For example, it makes it easy to zoom in instantly for only some portion of a video.
Both the 'out_time' and 'in_time' variables have been added in the documentation
for zoompan.

Example usage of 'in_time' in the zoompan filter to zoom in 2x for the
first second of the input video and 1x for the rest:
    zoompan=z='if(between(in_time,0,1),2,1):d=1'

V2: Fix zoompan filter documentation stating that the time variable
would be NAN if the input timestamp is unknown.

V3: Add 'it' alias for 'in_time. Add 'out_time' and 'ot' aliases for 'time'.
Minor corrections to zoompan docs.

Signed-off-by: exwm <thighsman@protonmail.com>
2020-06-25 10:27:07 +02:00
Ting Fu
13f5613e68 dnn_backend_native_layer_mathunary: add atan support
It can be tested with the model generated with below python script:

import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.atan(x)
x2 = tf.divide(x1, 3.1416/4) # pi/4
y = tf.identity(x2, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
2020-06-25 08:41:50 +08:00
Ting Fu
461485feac dnn_backend_native_layer_mathunary: add acos support
It can be tested with the model generated with below python script:

import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.acos(x)
x2 = tf.divide(x1, 3.1416/2) # pi/2
y = tf.identity(x2, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
2020-06-25 08:41:50 +08:00
Ting Fu
486c0c419d dnn_backend_native_layer_mathunary: add asin support
It can be tested with the model generated with below python script:

import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.asin(x)
x2 = tf.divide(x1, 3.1416/2) # pi/2
y = tf.identity(x2, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
2020-06-25 08:41:50 +08:00
Paul B Mahol
ce297b44d3 avfilter/vf_v360: do not ignore return value of allocate_plane() 2020-06-23 21:55:40 +02:00
Paul B Mahol
00a5df71ad avfilter/vf_v360: add orthographic projection support 2020-06-23 16:00:02 +02:00
Paul B Mahol
44ce333f03 avfilters/vf_v360: add equisolid projection support 2020-06-22 14:41:36 +02:00
Andreas Rheinhardt
3f2be5372e avfilter/vf_showpalette: Don't pretend disp_palette can fail
It can't fail, yet it returns an int and other code checks whether it
failed; yet if it did fail, an AVFrame would leak. One could of course
add an av_frame_free for this (that compilers could optimize away), yet
it is easier to simply stop pretending that disp_palette could fail.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
2020-06-22 13:52:01 +02:00
Paul B Mahol
fdac3c80ac avfilter/af_ladspa: check return value of getenv() 2020-06-21 21:35:40 +02:00
Paul B Mahol
683a1599d4 avfilter/af_ladspa: add latency compensation 2020-06-21 21:35:40 +02:00
Paul B Mahol
842bc312ad avfilter/af_ladspa: check another directory for plugins 2020-06-21 14:48:27 +02:00
Limin Wang
548ef7a12b avfilter: add D2TS, TS2D, TS2T as a common macro in internal.h
Signed-off-by: Limin Wang <lance.lmwang@gmail.com>
2020-06-19 23:12:49 +08:00
Limin Wang
dacae40a4b avfilter/vf_overlay: add yuv420p10 and yuv422p10 10bit format support
Signed-off-by: Limin Wang <lance.lmwang@gmail.com>
2020-06-19 07:14:46 +08:00
Limin Wang
4d787c16e8 avfilter/vf_overlay: support for 8bit and 10bit overlay with macro-based function
Signed-off-by: Limin Wang <lance.lmwang@gmail.com>
2020-06-19 07:14:46 +08:00
Guo Yejun
0b3bd001ac dnn_backend_native: check operand index
it fixed the issue in https://trac.ffmpeg.org/ticket/8716
2020-06-17 13:42:52 +08:00
Guo Yejun
fc932195ab dnn_backend_native.c: refine code for fail case 2020-06-17 13:42:52 +08:00
Limin Wang
567d571b20 avfilter/vf_showinfo: display H.26[45] user data unregistered sei message
Signed-off-by: Limin Wang <lance.lmwang@gmail.com>
2020-06-15 07:19:55 +08:00
Paul B Mahol
c0e7164ba6 avfilter/vf_vaguedenoiser: fix small typo in option explanation 2020-06-13 00:41:16 +02:00
Paul B Mahol
e65d76fb94 avfilter/af_rubberband: adjust nb_samples after every command 2020-06-13 00:21:07 +02:00
Ting Fu
22d0860c13 dnn_backend_native_layer_mathunary: add tan support
It can be tested with the model generated with below python scripy

import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.multiply(x, 0.78)
x2 = tf.tan(x1)
y = tf.identity(x2, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
2020-06-11 11:10:51 +08:00
Ting Fu
88fb494f42 dnn_backend_native_layer_mathunary: add cos support
It can be tested with the model generated with below python scripy

import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.multiply(x, 1.5)
x2 = tf.cos(x1)
y = tf.identity(x2, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
2020-06-11 11:10:51 +08:00
Ting Fu
0b6d3f0d83 dnn_backend_native_layer_mathunary: add sin support
It can be tested with the model file generated with below python scripy:

import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.multiply(x, 3.14)
x2 = tf.sin(x1)
y = tf.identity(x2, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
2020-06-11 11:10:51 +08:00
Anton Khirnov
c7d8d8d8d9 vf_spp: switch to child_class_iterate() 2020-06-10 12:36:44 +02:00
Anton Khirnov
6bfac4ee6f vf_scale: switch to child_class_iterate() 2020-06-10 12:36:44 +02:00
Anton Khirnov
344149cf01 framesync: switch to child_class_iterate() 2020-06-10 12:36:44 +02:00
Anton Khirnov
aba98de6b8 avfilter: switch to child_class_iterate() 2020-06-10 12:36:44 +02:00