Add examples on how to use this filter, and improve the code style.
Implement the slice-level parallelism for guided filter.
Add the basic version of guided filter.
Signed-off-by: Xuewei Meng <xwmeng96@gmail.com>
Reviewed-by: Steven Liu <liuqi05@kuaishou.com>
classification is done on every detection bounding box in frame's side data,
which are the results of object detection (filter dnn_detect).
Please refer to commit log of dnn_detect for the material for detection,
and see below for classification.
- download material for classifcation:
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.bin
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.xml
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.label
- run command as:
./ffmpeg -i cici.jpg -vf dnn_detect=dnn_backend=openvino:model=face-detection-adas-0001.xml:input=data:output=detection_out:confidence=0.6:labels=face-detection-adas-0001.label,dnn_classify=dnn_backend=openvino:model=emotions-recognition-retail-0003.xml:input=data:output=prob_emotion:confidence=0.3:labels=emotions-recognition-retail-0003.label:target=face,showinfo -f null -
We'll see the detect&classify result as below:
[Parsed_showinfo_2 @ 0x55b7d25e77c0] side data - detection bounding boxes:
[Parsed_showinfo_2 @ 0x55b7d25e77c0] source: face-detection-adas-0001.xml, emotions-recognition-retail-0003.xml
[Parsed_showinfo_2 @ 0x55b7d25e77c0] index: 0, region: (1005, 813) -> (1086, 905), label: face, confidence: 10000/10000.
[Parsed_showinfo_2 @ 0x55b7d25e77c0] classify: label: happy, confidence: 6757/10000.
[Parsed_showinfo_2 @ 0x55b7d25e77c0] index: 1, region: (888, 839) -> (967, 926), label: face, confidence: 6917/10000.
[Parsed_showinfo_2 @ 0x55b7d25e77c0] classify: label: anger, confidence: 4320/10000.
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Deprecated in c29038f304.
The resample filter based upon this library has been removed as well.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
Signed-off-by: James Almer <jamrial@gmail.com>
Below are the example steps to do object detection:
1. download and install l_openvino_toolkit_p_2021.1.110.tgz from
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit/download.html
or, we can get source code (tag 2021.1), build and install.
2. export LD_LIBRARY_PATH with openvino settings, for example:
.../deployment_tools/inference_engine/lib/intel64/:.../deployment_tools/inference_engine/external/tbb/lib/
3. rebuild ffmpeg from source code with configure option:
--enable-libopenvino
--extra-cflags='-I.../deployment_tools/inference_engine/include/'
--extra-ldflags='-L.../deployment_tools/inference_engine/lib/intel64'
4. download model files and test image
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/face-detection-adas-0001.bin
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/face-detection-adas-0001.xml
wget
https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/face-detection-adas-0001.label
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/images/cici.jpg
5. run ffmpeg with:
./ffmpeg -i cici.jpg -vf dnn_detect=dnn_backend=openvino:model=face-detection-adas-0001.xml:input=data:output=detection_out:confidence=0.6:labels=face-detection-adas-0001.label,showinfo -f null -
We'll see the detect result as below:
[Parsed_showinfo_1 @ 0x560c21ecbe40] side data - detection bounding boxes:
[Parsed_showinfo_1 @ 0x560c21ecbe40] source: face-detection-adas-0001.xml
[Parsed_showinfo_1 @ 0x560c21ecbe40] index: 0, region: (1005, 813) -> (1086, 905), label: face, confidence: 10000/10000.
[Parsed_showinfo_1 @ 0x560c21ecbe40] index: 1, region: (888, 839) -> (967, 926), label: face, confidence: 6917/10000.
There are two faces detected with confidence 100% and 69.17%.
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
This is Visual Information Fidelity (VIF) filter and one of the component
filters of VMAF. It outputs the average VIF score over all frames.
Signed-off-by: Ashish Singh <ashk43712@gmail.com>