mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-11-26 19:01:44 +02:00
9458a62dec
This patch tweaks search_for_pns to be both more aggressive and more careful when applying PNS. On the one side, it will again try to use PNS on zero (or effectively zero) bands. For this, both zeroes and band_type have to be checked (some ZERO bands aren't marked in zeroes). On the other side, a more accurate rate-distortion measure avoids using PNS where it would cause audible distortion. Also fixed a small bug in the computation of freq that caused PNS usage on low-frequency bands during 8-short windows. This allows re-enabling PNS during 8-short.
793 lines
32 KiB
C
793 lines
32 KiB
C
/*
|
|
* AAC coefficients encoder
|
|
* Copyright (C) 2008-2009 Konstantin Shishkov
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* AAC coefficients encoder
|
|
*/
|
|
|
|
/***********************************
|
|
* TODOs:
|
|
* speedup quantizer selection
|
|
* add sane pulse detection
|
|
***********************************/
|
|
|
|
#include "libavutil/libm.h" // brought forward to work around cygwin header breakage
|
|
|
|
#include <float.h>
|
|
#include "libavutil/mathematics.h"
|
|
#include "avcodec.h"
|
|
#include "put_bits.h"
|
|
#include "aac.h"
|
|
#include "aacenc.h"
|
|
#include "aactab.h"
|
|
#include "aacenctab.h"
|
|
#include "aacenc_utils.h"
|
|
#include "aacenc_quantization.h"
|
|
#include "aac_tablegen_decl.h"
|
|
|
|
#include "aacenc_is.h"
|
|
#include "aacenc_tns.h"
|
|
#include "aacenc_pred.h"
|
|
|
|
#include "libavcodec/aaccoder_twoloop.h"
|
|
|
|
/** Frequency in Hz for lower limit of noise substitution **/
|
|
#define NOISE_LOW_LIMIT 4000
|
|
|
|
/* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread
|
|
* beyond which no PNS is used (since the SFBs contain tone rather than noise) */
|
|
#define NOISE_SPREAD_THRESHOLD 0.5073f
|
|
|
|
/* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to
|
|
* replace low energy non zero bands */
|
|
#define NOISE_LAMBDA_REPLACE 1.948f
|
|
|
|
#include "libavcodec/aaccoder_trellis.h"
|
|
|
|
/**
|
|
* structure used in optimal codebook search
|
|
*/
|
|
typedef struct BandCodingPath {
|
|
int prev_idx; ///< pointer to the previous path point
|
|
float cost; ///< path cost
|
|
int run;
|
|
} BandCodingPath;
|
|
|
|
/**
|
|
* Encode band info for single window group bands.
|
|
*/
|
|
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
|
|
int win, int group_len, const float lambda)
|
|
{
|
|
BandCodingPath path[120][CB_TOT_ALL];
|
|
int w, swb, cb, start, size;
|
|
int i, j;
|
|
const int max_sfb = sce->ics.max_sfb;
|
|
const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
|
|
const int run_esc = (1 << run_bits) - 1;
|
|
int idx, ppos, count;
|
|
int stackrun[120], stackcb[120], stack_len;
|
|
float next_minrd = INFINITY;
|
|
int next_mincb = 0;
|
|
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
start = win*128;
|
|
for (cb = 0; cb < CB_TOT_ALL; cb++) {
|
|
path[0][cb].cost = 0.0f;
|
|
path[0][cb].prev_idx = -1;
|
|
path[0][cb].run = 0;
|
|
}
|
|
for (swb = 0; swb < max_sfb; swb++) {
|
|
size = sce->ics.swb_sizes[swb];
|
|
if (sce->zeroes[win*16 + swb]) {
|
|
for (cb = 0; cb < CB_TOT_ALL; cb++) {
|
|
path[swb+1][cb].prev_idx = cb;
|
|
path[swb+1][cb].cost = path[swb][cb].cost;
|
|
path[swb+1][cb].run = path[swb][cb].run + 1;
|
|
}
|
|
} else {
|
|
float minrd = next_minrd;
|
|
int mincb = next_mincb;
|
|
next_minrd = INFINITY;
|
|
next_mincb = 0;
|
|
for (cb = 0; cb < CB_TOT_ALL; cb++) {
|
|
float cost_stay_here, cost_get_here;
|
|
float rd = 0.0f;
|
|
if (cb >= 12 && sce->band_type[win*16+swb] < aac_cb_out_map[cb] ||
|
|
cb < aac_cb_in_map[sce->band_type[win*16+swb]] && sce->band_type[win*16+swb] > aac_cb_out_map[cb]) {
|
|
path[swb+1][cb].prev_idx = -1;
|
|
path[swb+1][cb].cost = INFINITY;
|
|
path[swb+1][cb].run = path[swb][cb].run + 1;
|
|
continue;
|
|
}
|
|
for (w = 0; w < group_len; w++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
|
|
rd += quantize_band_cost(s, &sce->coeffs[start + w*128],
|
|
&s->scoefs[start + w*128], size,
|
|
sce->sf_idx[(win+w)*16+swb], aac_cb_out_map[cb],
|
|
lambda / band->threshold, INFINITY, NULL, 0);
|
|
}
|
|
cost_stay_here = path[swb][cb].cost + rd;
|
|
cost_get_here = minrd + rd + run_bits + 4;
|
|
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
|
|
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
|
|
cost_stay_here += run_bits;
|
|
if (cost_get_here < cost_stay_here) {
|
|
path[swb+1][cb].prev_idx = mincb;
|
|
path[swb+1][cb].cost = cost_get_here;
|
|
path[swb+1][cb].run = 1;
|
|
} else {
|
|
path[swb+1][cb].prev_idx = cb;
|
|
path[swb+1][cb].cost = cost_stay_here;
|
|
path[swb+1][cb].run = path[swb][cb].run + 1;
|
|
}
|
|
if (path[swb+1][cb].cost < next_minrd) {
|
|
next_minrd = path[swb+1][cb].cost;
|
|
next_mincb = cb;
|
|
}
|
|
}
|
|
}
|
|
start += sce->ics.swb_sizes[swb];
|
|
}
|
|
|
|
//convert resulting path from backward-linked list
|
|
stack_len = 0;
|
|
idx = 0;
|
|
for (cb = 1; cb < CB_TOT_ALL; cb++)
|
|
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
|
|
idx = cb;
|
|
ppos = max_sfb;
|
|
while (ppos > 0) {
|
|
av_assert1(idx >= 0);
|
|
cb = idx;
|
|
stackrun[stack_len] = path[ppos][cb].run;
|
|
stackcb [stack_len] = cb;
|
|
idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
|
|
ppos -= path[ppos][cb].run;
|
|
stack_len++;
|
|
}
|
|
//perform actual band info encoding
|
|
start = 0;
|
|
for (i = stack_len - 1; i >= 0; i--) {
|
|
cb = aac_cb_out_map[stackcb[i]];
|
|
put_bits(&s->pb, 4, cb);
|
|
count = stackrun[i];
|
|
memset(sce->zeroes + win*16 + start, !cb, count);
|
|
//XXX: memset when band_type is also uint8_t
|
|
for (j = 0; j < count; j++) {
|
|
sce->band_type[win*16 + start] = cb;
|
|
start++;
|
|
}
|
|
while (count >= run_esc) {
|
|
put_bits(&s->pb, run_bits, run_esc);
|
|
count -= run_esc;
|
|
}
|
|
put_bits(&s->pb, run_bits, count);
|
|
}
|
|
}
|
|
|
|
|
|
typedef struct TrellisPath {
|
|
float cost;
|
|
int prev;
|
|
} TrellisPath;
|
|
|
|
#define TRELLIS_STAGES 121
|
|
#define TRELLIS_STATES (SCALE_MAX_DIFF+1)
|
|
|
|
static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce)
|
|
{
|
|
int w, g, start = 0;
|
|
int minscaler_n = sce->sf_idx[0], minscaler_i = sce->sf_idx[0];
|
|
int bands = 0;
|
|
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = 0;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
|
|
sce->sf_idx[w*16+g] = av_clip(roundf(log2f(sce->is_ener[w*16+g])*2), -155, 100);
|
|
minscaler_i = FFMIN(minscaler_i, sce->sf_idx[w*16+g]);
|
|
bands++;
|
|
} else if (sce->band_type[w*16+g] == NOISE_BT) {
|
|
sce->sf_idx[w*16+g] = av_clip(3+ceilf(log2f(sce->pns_ener[w*16+g])*2), -100, 155);
|
|
minscaler_n = FFMIN(minscaler_n, sce->sf_idx[w*16+g]);
|
|
bands++;
|
|
}
|
|
start += sce->ics.swb_sizes[g];
|
|
}
|
|
}
|
|
|
|
if (!bands)
|
|
return;
|
|
|
|
/* Clip the scalefactor indices */
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
|
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler_i, minscaler_i + SCALE_MAX_DIFF);
|
|
} else if (sce->band_type[w*16+g] == NOISE_BT) {
|
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler_n, minscaler_n + SCALE_MAX_DIFF);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
|
|
SingleChannelElement *sce,
|
|
const float lambda)
|
|
{
|
|
int q, w, w2, g, start = 0;
|
|
int i, j;
|
|
int idx;
|
|
TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
|
|
int bandaddr[TRELLIS_STAGES];
|
|
int minq;
|
|
float mincost;
|
|
float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
|
|
int q0, q1, qcnt = 0;
|
|
|
|
for (i = 0; i < 1024; i++) {
|
|
float t = fabsf(sce->coeffs[i]);
|
|
if (t > 0.0f) {
|
|
q0f = FFMIN(q0f, t);
|
|
q1f = FFMAX(q1f, t);
|
|
qnrgf += t*t;
|
|
qcnt++;
|
|
}
|
|
}
|
|
|
|
if (!qcnt) {
|
|
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
|
|
memset(sce->zeroes, 1, sizeof(sce->zeroes));
|
|
return;
|
|
}
|
|
|
|
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
|
|
q0 = coef2minsf(q0f);
|
|
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero
|
|
q1 = coef2maxsf(q1f);
|
|
if (q1 - q0 > 60) {
|
|
int q0low = q0;
|
|
int q1high = q1;
|
|
//minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
|
|
int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
|
|
q1 = qnrg + 30;
|
|
q0 = qnrg - 30;
|
|
if (q0 < q0low) {
|
|
q1 += q0low - q0;
|
|
q0 = q0low;
|
|
} else if (q1 > q1high) {
|
|
q0 -= q1 - q1high;
|
|
q1 = q1high;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < TRELLIS_STATES; i++) {
|
|
paths[0][i].cost = 0.0f;
|
|
paths[0][i].prev = -1;
|
|
}
|
|
for (j = 1; j < TRELLIS_STAGES; j++) {
|
|
for (i = 0; i < TRELLIS_STATES; i++) {
|
|
paths[j][i].cost = INFINITY;
|
|
paths[j][i].prev = -2;
|
|
}
|
|
}
|
|
idx = 1;
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
const float *coefs = &sce->coeffs[start];
|
|
float qmin, qmax;
|
|
int nz = 0;
|
|
|
|
bandaddr[idx] = w * 16 + g;
|
|
qmin = INT_MAX;
|
|
qmax = 0.0f;
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
if (band->energy <= band->threshold || band->threshold == 0.0f) {
|
|
sce->zeroes[(w+w2)*16+g] = 1;
|
|
continue;
|
|
}
|
|
sce->zeroes[(w+w2)*16+g] = 0;
|
|
nz = 1;
|
|
for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
|
|
float t = fabsf(coefs[w2*128+i]);
|
|
if (t > 0.0f)
|
|
qmin = FFMIN(qmin, t);
|
|
qmax = FFMAX(qmax, t);
|
|
}
|
|
}
|
|
if (nz) {
|
|
int minscale, maxscale;
|
|
float minrd = INFINITY;
|
|
float maxval;
|
|
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
|
|
minscale = coef2minsf(qmin);
|
|
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero
|
|
maxscale = coef2maxsf(qmax);
|
|
minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
|
|
maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
|
|
maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
|
|
for (q = minscale; q < maxscale; q++) {
|
|
float dist = 0;
|
|
int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
|
|
q + q0, cb, lambda / band->threshold, INFINITY, NULL, 0);
|
|
}
|
|
minrd = FFMIN(minrd, dist);
|
|
|
|
for (i = 0; i < q1 - q0; i++) {
|
|
float cost;
|
|
cost = paths[idx - 1][i].cost + dist
|
|
+ ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
|
|
if (cost < paths[idx][q].cost) {
|
|
paths[idx][q].cost = cost;
|
|
paths[idx][q].prev = i;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (q = 0; q < q1 - q0; q++) {
|
|
paths[idx][q].cost = paths[idx - 1][q].cost + 1;
|
|
paths[idx][q].prev = q;
|
|
}
|
|
}
|
|
sce->zeroes[w*16+g] = !nz;
|
|
start += sce->ics.swb_sizes[g];
|
|
idx++;
|
|
}
|
|
}
|
|
idx--;
|
|
mincost = paths[idx][0].cost;
|
|
minq = 0;
|
|
for (i = 1; i < TRELLIS_STATES; i++) {
|
|
if (paths[idx][i].cost < mincost) {
|
|
mincost = paths[idx][i].cost;
|
|
minq = i;
|
|
}
|
|
}
|
|
while (idx) {
|
|
sce->sf_idx[bandaddr[idx]] = minq + q0;
|
|
minq = paths[idx][minq].prev;
|
|
idx--;
|
|
}
|
|
//set the same quantizers inside window groups
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
|
|
for (g = 0; g < sce->ics.num_swb; g++)
|
|
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
|
|
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
|
|
}
|
|
|
|
|
|
static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
|
|
SingleChannelElement *sce,
|
|
const float lambda)
|
|
{
|
|
int start = 0, i, w, w2, g;
|
|
float uplim[128], maxq[128];
|
|
int minq, maxsf;
|
|
float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
|
|
int last = 0, lastband = 0, curband = 0;
|
|
float avg_energy = 0.0;
|
|
if (sce->ics.num_windows == 1) {
|
|
start = 0;
|
|
for (i = 0; i < 1024; i++) {
|
|
if (i - start >= sce->ics.swb_sizes[curband]) {
|
|
start += sce->ics.swb_sizes[curband];
|
|
curband++;
|
|
}
|
|
if (sce->coeffs[i]) {
|
|
avg_energy += sce->coeffs[i] * sce->coeffs[i];
|
|
last = i;
|
|
lastband = curband;
|
|
}
|
|
}
|
|
} else {
|
|
for (w = 0; w < 8; w++) {
|
|
const float *coeffs = &sce->coeffs[w*128];
|
|
curband = start = 0;
|
|
for (i = 0; i < 128; i++) {
|
|
if (i - start >= sce->ics.swb_sizes[curband]) {
|
|
start += sce->ics.swb_sizes[curband];
|
|
curband++;
|
|
}
|
|
if (coeffs[i]) {
|
|
avg_energy += coeffs[i] * coeffs[i];
|
|
last = FFMAX(last, i);
|
|
lastband = FFMAX(lastband, curband);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
last++;
|
|
avg_energy /= last;
|
|
if (avg_energy == 0.0f) {
|
|
for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
|
|
sce->sf_idx[i] = SCALE_ONE_POS;
|
|
return;
|
|
}
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
float *coefs = &sce->coeffs[start];
|
|
const int size = sce->ics.swb_sizes[g];
|
|
int start2 = start, end2 = start + size, peakpos = start;
|
|
float maxval = -1, thr = 0.0f, t;
|
|
maxq[w*16+g] = 0.0f;
|
|
if (g > lastband) {
|
|
maxq[w*16+g] = 0.0f;
|
|
start += size;
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
|
|
memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
|
|
continue;
|
|
}
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
for (i = 0; i < size; i++) {
|
|
float t = coefs[w2*128+i]*coefs[w2*128+i];
|
|
maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
|
|
thr += t;
|
|
if (sce->ics.num_windows == 1 && maxval < t) {
|
|
maxval = t;
|
|
peakpos = start+i;
|
|
}
|
|
}
|
|
}
|
|
if (sce->ics.num_windows == 1) {
|
|
start2 = FFMAX(peakpos - 2, start2);
|
|
end2 = FFMIN(peakpos + 3, end2);
|
|
} else {
|
|
start2 -= start;
|
|
end2 -= start;
|
|
}
|
|
start += size;
|
|
thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
|
|
t = 1.0 - (1.0 * start2 / last);
|
|
uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
|
|
}
|
|
}
|
|
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
const float *coefs = &sce->coeffs[start];
|
|
const float *scaled = &s->scoefs[start];
|
|
const int size = sce->ics.swb_sizes[g];
|
|
int scf, prev_scf, step;
|
|
int min_scf = -1, max_scf = 256;
|
|
float curdiff;
|
|
if (maxq[w*16+g] < 21.544) {
|
|
sce->zeroes[w*16+g] = 1;
|
|
start += size;
|
|
continue;
|
|
}
|
|
sce->zeroes[w*16+g] = 0;
|
|
scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
|
|
for (;;) {
|
|
float dist = 0.0f;
|
|
int quant_max;
|
|
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
int b;
|
|
dist += quantize_band_cost(s, coefs + w2*128,
|
|
scaled + w2*128,
|
|
sce->ics.swb_sizes[g],
|
|
scf,
|
|
ESC_BT,
|
|
lambda,
|
|
INFINITY,
|
|
&b,
|
|
0);
|
|
dist -= b;
|
|
}
|
|
dist *= 1.0f / 512.0f / lambda;
|
|
quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512], ROUND_STANDARD);
|
|
if (quant_max >= 8191) { // too much, return to the previous quantizer
|
|
sce->sf_idx[w*16+g] = prev_scf;
|
|
break;
|
|
}
|
|
prev_scf = scf;
|
|
curdiff = fabsf(dist - uplim[w*16+g]);
|
|
if (curdiff <= 1.0f)
|
|
step = 0;
|
|
else
|
|
step = log2f(curdiff);
|
|
if (dist > uplim[w*16+g])
|
|
step = -step;
|
|
scf += step;
|
|
scf = av_clip_uint8(scf);
|
|
step = scf - prev_scf;
|
|
if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
|
|
sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
|
|
break;
|
|
}
|
|
if (step > 0)
|
|
min_scf = prev_scf;
|
|
else
|
|
max_scf = prev_scf;
|
|
}
|
|
start += size;
|
|
}
|
|
}
|
|
minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
|
|
for (i = 1; i < 128; i++) {
|
|
if (!sce->sf_idx[i])
|
|
sce->sf_idx[i] = sce->sf_idx[i-1];
|
|
else
|
|
minq = FFMIN(minq, sce->sf_idx[i]);
|
|
}
|
|
if (minq == INT_MAX)
|
|
minq = 0;
|
|
minq = FFMIN(minq, SCALE_MAX_POS);
|
|
maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
|
|
for (i = 126; i >= 0; i--) {
|
|
if (!sce->sf_idx[i])
|
|
sce->sf_idx[i] = sce->sf_idx[i+1];
|
|
sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
|
|
}
|
|
}
|
|
|
|
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
|
|
SingleChannelElement *sce,
|
|
const float lambda)
|
|
{
|
|
int i, w, w2, g;
|
|
int minq = 255;
|
|
|
|
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
if (band->energy <= band->threshold) {
|
|
sce->sf_idx[(w+w2)*16+g] = 218;
|
|
sce->zeroes[(w+w2)*16+g] = 1;
|
|
} else {
|
|
sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
|
|
sce->zeroes[(w+w2)*16+g] = 0;
|
|
}
|
|
minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < 128; i++) {
|
|
sce->sf_idx[i] = 140;
|
|
//av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
|
|
}
|
|
//set the same quantizers inside window groups
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
|
|
for (g = 0; g < sce->ics.num_swb; g++)
|
|
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
|
|
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
|
|
}
|
|
|
|
static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
|
|
{
|
|
FFPsyBand *band;
|
|
int w, g, w2, i;
|
|
float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128];
|
|
float *NOR34 = &s->scoefs[3*128];
|
|
const float lambda = s->lambda;
|
|
const float freq_mult = avctx->sample_rate/(1024.0f/sce->ics.num_windows)/2.0f;
|
|
const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda);
|
|
const float spread_threshold = NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f);
|
|
|
|
memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
int wstart = sce->ics.swb_offset[w*16];
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
int noise_sfi;
|
|
float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
|
|
float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh;
|
|
float sfb_energy = 0.0f, threshold = 0.0f, spread = 0.0f;
|
|
const int start = sce->ics.swb_offset[w*16+g];
|
|
const float freq = (start-wstart)*freq_mult;
|
|
const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
|
|
if (freq < NOISE_LOW_LIMIT || avctx->cutoff && freq >= avctx->cutoff)
|
|
continue;
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
sfb_energy += band->energy;
|
|
spread += band->spread;
|
|
threshold += band->threshold;
|
|
}
|
|
|
|
/* Ramps down at ~8000Hz and loosens the dist threshold */
|
|
dist_thresh = FFMIN(2.5f*NOISE_LOW_LIMIT/freq, 2.5f);
|
|
|
|
/* zero and energy close to threshold usually means hole avoidance,
|
|
* we do want to remain avoiding holes with PNS
|
|
*/
|
|
if (((sce->zeroes[w*16+g] || !sce->band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.5f/freq_boost)) || spread < spread_threshold ||
|
|
(sce->band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost)) {
|
|
sce->pns_ener[w*16+g] = sfb_energy;
|
|
continue;
|
|
}
|
|
|
|
pns_tgt_energy = sfb_energy*spread*spread/sce->ics.group_len[w];
|
|
noise_sfi = av_clip(roundf(log2f(pns_tgt_energy)*2), -100, 155); /* Quantize */
|
|
noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO]; /* Dequantize */
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
float band_energy, scale, pns_senergy;
|
|
const int start_c = sce->ics.swb_offset[(w+w2)*16+g];
|
|
band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
for (i = 0; i < sce->ics.swb_sizes[g]; i++)
|
|
PNS[i] = s->random_state = lcg_random(s->random_state);
|
|
band_energy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
|
|
scale = noise_amp/sqrtf(band_energy);
|
|
s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->ics.swb_sizes[g]);
|
|
pns_senergy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
|
|
pns_energy += pns_senergy;
|
|
abs_pow34_v(NOR34, &sce->coeffs[start_c], sce->ics.swb_sizes[g]);
|
|
abs_pow34_v(PNS34, PNS, sce->ics.swb_sizes[g]);
|
|
dist1 += quantize_band_cost(s, &sce->coeffs[start_c],
|
|
NOR34,
|
|
sce->ics.swb_sizes[g],
|
|
sce->sf_idx[(w+w2)*16+g],
|
|
sce->band_alt[(w+w2)*16+g],
|
|
lambda/band->threshold, INFINITY, NULL, 0);
|
|
/* Estimate rd on average as 9 bits for CB and sf + spread energy * lambda/thr */
|
|
dist2 += 9+band->energy/(band->spread*band->spread)*lambda/band->threshold;
|
|
}
|
|
energy_ratio = pns_tgt_energy/pns_energy; /* Compensates for quantization error */
|
|
sce->pns_ener[w*16+g] = energy_ratio*pns_tgt_energy;
|
|
if (energy_ratio > 0.85f && energy_ratio < 1.25f && (sce->zeroes[w*16+g] || !sce->band_alt[w*16+g] || dist2*dist_thresh < dist1)) {
|
|
sce->band_type[w*16+g] = NOISE_BT;
|
|
sce->zeroes[w*16+g] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
|
|
{
|
|
int start = 0, i, w, w2, g;
|
|
float M[128], S[128];
|
|
float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
|
|
const float lambda = s->lambda;
|
|
SingleChannelElement *sce0 = &cpe->ch[0];
|
|
SingleChannelElement *sce1 = &cpe->ch[1];
|
|
if (!cpe->common_window)
|
|
return;
|
|
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
|
|
start = 0;
|
|
for (g = 0; g < sce0->ics.num_swb; g++) {
|
|
if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
|
|
float dist1 = 0.0f, dist2 = 0.0f;
|
|
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
|
|
FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
|
|
float minthr = FFMIN(band0->threshold, band1->threshold);
|
|
float maxthr = FFMAX(band0->threshold, band1->threshold);
|
|
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
|
|
M[i] = (sce0->coeffs[start+(w+w2)*128+i]
|
|
+ sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
|
|
S[i] = M[i]
|
|
- sce1->coeffs[start+(w+w2)*128+i];
|
|
}
|
|
abs_pow34_v(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
|
|
abs_pow34_v(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
|
|
abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
|
|
abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
|
|
dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128],
|
|
L34,
|
|
sce0->ics.swb_sizes[g],
|
|
sce0->sf_idx[(w+w2)*16+g],
|
|
sce0->band_type[(w+w2)*16+g],
|
|
lambda / band0->threshold, INFINITY, NULL, 0);
|
|
dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
|
|
R34,
|
|
sce1->ics.swb_sizes[g],
|
|
sce1->sf_idx[(w+w2)*16+g],
|
|
sce1->band_type[(w+w2)*16+g],
|
|
lambda / band1->threshold, INFINITY, NULL, 0);
|
|
dist2 += quantize_band_cost(s, M,
|
|
M34,
|
|
sce0->ics.swb_sizes[g],
|
|
sce0->sf_idx[(w+w2)*16+g],
|
|
sce0->band_type[(w+w2)*16+g],
|
|
lambda / maxthr, INFINITY, NULL, 0);
|
|
dist2 += quantize_band_cost(s, S,
|
|
S34,
|
|
sce1->ics.swb_sizes[g],
|
|
sce1->sf_idx[(w+w2)*16+g],
|
|
sce1->band_type[(w+w2)*16+g],
|
|
lambda / minthr, INFINITY, NULL, 0);
|
|
}
|
|
cpe->ms_mask[w*16+g] = dist2 < dist1;
|
|
}
|
|
start += sce0->ics.swb_sizes[g];
|
|
}
|
|
}
|
|
}
|
|
|
|
AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
|
|
[AAC_CODER_FAAC] = {
|
|
search_for_quantizers_faac,
|
|
encode_window_bands_info,
|
|
quantize_and_encode_band,
|
|
ff_aac_encode_tns_info,
|
|
ff_aac_encode_main_pred,
|
|
ff_aac_adjust_common_prediction,
|
|
ff_aac_apply_main_pred,
|
|
ff_aac_apply_tns,
|
|
set_special_band_scalefactors,
|
|
search_for_pns,
|
|
ff_aac_search_for_tns,
|
|
search_for_ms,
|
|
ff_aac_search_for_is,
|
|
ff_aac_search_for_pred,
|
|
},
|
|
[AAC_CODER_ANMR] = {
|
|
search_for_quantizers_anmr,
|
|
encode_window_bands_info,
|
|
quantize_and_encode_band,
|
|
ff_aac_encode_tns_info,
|
|
ff_aac_encode_main_pred,
|
|
ff_aac_adjust_common_prediction,
|
|
ff_aac_apply_main_pred,
|
|
ff_aac_apply_tns,
|
|
set_special_band_scalefactors,
|
|
search_for_pns,
|
|
ff_aac_search_for_tns,
|
|
search_for_ms,
|
|
ff_aac_search_for_is,
|
|
ff_aac_search_for_pred,
|
|
},
|
|
[AAC_CODER_TWOLOOP] = {
|
|
search_for_quantizers_twoloop,
|
|
codebook_trellis_rate,
|
|
quantize_and_encode_band,
|
|
ff_aac_encode_tns_info,
|
|
ff_aac_encode_main_pred,
|
|
ff_aac_adjust_common_prediction,
|
|
ff_aac_apply_main_pred,
|
|
ff_aac_apply_tns,
|
|
set_special_band_scalefactors,
|
|
search_for_pns,
|
|
ff_aac_search_for_tns,
|
|
search_for_ms,
|
|
ff_aac_search_for_is,
|
|
ff_aac_search_for_pred,
|
|
},
|
|
[AAC_CODER_FAST] = {
|
|
search_for_quantizers_fast,
|
|
encode_window_bands_info,
|
|
quantize_and_encode_band,
|
|
ff_aac_encode_tns_info,
|
|
ff_aac_encode_main_pred,
|
|
ff_aac_adjust_common_prediction,
|
|
ff_aac_apply_main_pred,
|
|
ff_aac_apply_tns,
|
|
set_special_band_scalefactors,
|
|
search_for_pns,
|
|
ff_aac_search_for_tns,
|
|
search_for_ms,
|
|
ff_aac_search_for_is,
|
|
ff_aac_search_for_pred,
|
|
},
|
|
};
|