1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-07 11:13:41 +02:00
FFmpeg/tests/dnn/dnn-layer-conv2d-test.c
Xu Jun 3c7cad69f2 dnn_backend_native_layer_conv2d.c:Add mutithread function
Use pthread to multithread dnn_execute_layer_conv2d.
Can be tested with command "./ffmpeg_g -i input.png -vf \
format=yuvj420p,dnn_processing=dnn_backend=native:model= \
espcn.model:input=x:output=y:options=conv2d_threads=23 \
 -y sr_native.jpg -benchmark"

before patch: utime=11.238s stime=0.005s rtime=11.248s
after patch:  utime=20.817s stime=0.047s rtime=1.051s
on my 3900X 12c24t @4.2GHz

About the increase of utime, it's because that CPU HyperThreading
technology makes logical cores twice of physical cores while cpu's
counting performance improves less than double. And utime sums
all cpu's logical cores' runtime. As a result, using threads num
near cpu's logical core's number will double utime, while reduce
rtime less than half for HyperThreading CPUs.

Signed-off-by: Xu Jun <xujunzz@sjtu.edu.cn>
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
2020-09-09 14:24:36 +08:00

251 lines
12 KiB
C

/*
* Copyright (c) 2019 Guo Yejun
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "libavfilter/dnn/dnn_backend_native_layer_conv2d.h"
#define EPSON 0.00001
extern const AVClass dnn_native_class;
static int test_with_same_dilate(void)
{
// the input data and expected data are generated with below python code.
/*
x = tf.placeholder(tf.float32, shape=[1, None, None, 3])
y = tf.layers.conv2d(x, 2, 3, activation=tf.nn.tanh, padding='same', dilation_rate=(2, 2), bias_initializer=tf.keras.initializers.he_normal())
data = np.random.rand(1, 5, 6, 3);
sess=tf.Session()
sess.run(tf.global_variables_initializer())
weights = dict([(var.name, sess.run(var)) for var in tf.trainable_variables()])
kernel = weights['conv2d/kernel:0']
kernel = np.transpose(kernel, [3, 0, 1, 2])
print("kernel:")
print(kernel.shape)
print(list(kernel.flatten()))
bias = weights['conv2d/bias:0']
print("bias:")
print(bias.shape)
print(list(bias.flatten()))
output = sess.run(y, feed_dict={x: data})
print("input:")
print(data.shape)
print(list(data.flatten()))
print("output:")
print(output.shape)
print(list(output.flatten()))
*/
ConvolutionalParams params;
DnnOperand operands[2];
int32_t input_indexes[1];
float input[1*5*6*3] = {
0.7012556460308194, 0.4233847954643357, 0.19515900664313612, 0.16343083004926495, 0.5758261611052848, 0.9510767434014871, 0.11014085055947687,
0.906327053637727, 0.8136794715542507, 0.45371764543639526, 0.5768443343523952, 0.19543668786046986, 0.15648326047898609, 0.2099500241141279,
0.17658777090552413, 0.059335724777169196, 0.1729991838469117, 0.8150514704819208, 0.4435535466703049, 0.3752188477566878, 0.749936650421431,
0.6823494635284907, 0.10776389679424747, 0.34247481674596836, 0.5147867256244629, 0.9063709728129032, 0.12423605800856818, 0.6064872945412728,
0.5891681538551459, 0.9865836236466314, 0.9002163879294677, 0.003968273184274618, 0.8628374809643967, 0.1327176268279583, 0.8449799925703798,
0.1937671869354366, 0.41524410152707425, 0.02038786604756837, 0.49792466069597496, 0.8881874553848784, 0.9683921035597336, 0.4122972568010813,
0.843553550993252, 0.9588482762501964, 0.5190350762645546, 0.4283584264145317, 0.09781496073714646, 0.9501058833776156, 0.8665541760152776,
0.31669272550095806, 0.07133074675453632, 0.606438007334886, 0.7007157020538224, 0.4827996264130444, 0.5167615606392761, 0.6385043039312651,
0.23069664707810555, 0.058233497329354456, 0.06323892961591071, 0.24816458893245974, 0.8646369065257812, 0.24742185893094837, 0.09991225948167437,
0.625700606979606, 0.7678541502111257, 0.6215834594679912, 0.5623003956582483, 0.07389123942681242, 0.7659100715711249, 0.486061471642225,
0.9947455699829012, 0.9094911797643259, 0.7644355876253265, 0.05384315321492239, 0.13565394382783613, 0.9810628204953316, 0.007386389078887889,
0.226182754156241, 0.2609021390764772, 0.24182802076928933, 0.13264782451941648, 0.2035816485767682, 0.005504188177612557, 0.7014619934040155,
0.956215988391991, 0.5670398541013633, 0.9809764721750784, 0.6886338100487461, 0.5758152317218274, 0.7137823176776179
};
float expected_output[1*5*6*2] = {
-0.9480655, -0.7169147, -0.9404794, -0.5567385, -0.8991124, -0.8306558, -0.94487447, -0.8932543, -0.88238764, -0.7301602,
-0.8974813, -0.7026703, -0.8858988, -0.53203243, -0.92881465, -0.5648504, -0.8871471, -0.7000097, -0.91754407, -0.79684794,
-0.760465, -0.117928326, -0.88302773, -0.8975289, -0.70615053, 0.19231977, -0.8318776, -0.386184, -0.80698484, -0.8556624,
-0.7336671, -0.6168619, -0.7658234, -0.63449603, -0.73314047, -0.87502456, -0.58158904, -0.4184259, -0.52618927, -0.13613208,
-0.5093187, -0.21027721, -0.39455596, -0.44507834, -0.22269244, -0.73400885, -0.77655095, -0.74408925, -0.57313335, -0.15333457,
-0.74620694, -0.34858236, -0.42586932, -0.5240488, 0.1634339, -0.2447881, -0.57927346, -0.62732303, -0.82287043, -0.8474058
};
float *output;
float kernel[2*3*3*3] = {
0.26025516, 0.16536498, -0.24351254, 0.33892477, -0.34005195, 0.35202783, 0.34056443, 0.01422739, 0.13799345, 0.29489166,
0.2781723, 0.178585, 0.22122234, 0.044115514, 0.13134438, 0.31705368, 0.22527462, -0.021323413, 0.115134746, -0.18216397,
-0.21197563, -0.027848959, -0.01704529, -0.12401503, -0.23415318, -0.12661739, -0.35338148, 0.20049328, -0.076153606,
-0.23642601, -0.3125769, -0.025851756, -0.30006272, 0.050762743, 0.32003498, 0.3052225, -0.0017385483, 0.25337684, -0.25664508,
0.27846587, -0.3112659, 0.2066065, 0.31499845, 0.113178134, 0.09449363, -0.11828774, -0.12671001, -0.36259216, 0.2710235,
-0.19676702, 0.023612618, -0.2596915, -0.34949252, -0.108270735
};
float bias[2] = { -1.6574852, -0.72915393 };
NativeContext ctx;
ctx.class = &dnn_native_class;
ctx.options.conv2d_threads = 1;
params.activation = TANH;
params.has_bias = 1;
params.biases = bias;
params.dilation = 2;
params.input_num = 3;
params.kernel = kernel;
params.kernel_size = 3;
params.output_num = 2;
params.padding_method = SAME;
operands[0].data = input;
operands[0].dims[0] = 1;
operands[0].dims[1] = 5;
operands[0].dims[2] = 6;
operands[0].dims[3] = 3;
operands[1].data = NULL;
input_indexes[0] = 0;
dnn_execute_layer_conv2d(operands, input_indexes, 1, &params, &ctx);
output = operands[1].data;
for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) {
if (fabs(output[i] - expected_output[i]) > EPSON) {
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]);
av_freep(&output);
return 1;
}
}
av_freep(&output);
return 0;
}
static int test_with_valid(void)
{
// the input data and expected data are generated with below python code.
/*
x = tf.placeholder(tf.float32, shape=[1, None, None, 3])
y = tf.layers.conv2d(x, 2, 3, activation=tf.nn.tanh, padding='valid', bias_initializer=tf.keras.initializers.he_normal())
data = np.random.rand(1, 5, 6, 3);
sess=tf.Session()
sess.run(tf.global_variables_initializer())
weights = dict([(var.name, sess.run(var)) for var in tf.trainable_variables()])
kernel = weights['conv2d/kernel:0']
kernel = np.transpose(kernel, [3, 0, 1, 2])
print("kernel:")
print(kernel.shape)
print(list(kernel.flatten()))
bias = weights['conv2d/bias:0']
print("bias:")
print(bias.shape)
print(list(bias.flatten()))
output = sess.run(y, feed_dict={x: data})
print("input:")
print(data.shape)
print(list(data.flatten()))
print("output:")
print(output.shape)
print(list(output.flatten()))
*/
ConvolutionalParams params;
DnnOperand operands[2];
int32_t input_indexes[1];
float input[1*5*6*3] = {
0.26126657468269665, 0.42762216215337556, 0.7466274030131497, 0.802550266787863, 0.3709323443076644, 0.5919817068197668, 0.49274512279324967,
0.7170132295090351, 0.0911793215410649, 0.5134213878288361, 0.670132600785118, 0.49417034512633484, 0.03887389460089885, 0.436785102836845,
0.1490231658611978, 0.6413606121498127, 0.8595987991375995, 0.9132593077586231, 0.7075959004873255, 0.17754995944845464, 0.5212507214937141,
0.35379732738215475, 0.25205107358505296, 0.3928792840544273, 0.09485294189485782, 0.8685115437448666, 0.6489046799288605, 0.509253797582924,
0.8993255536791972, 0.18740056466602373, 0.34237617336313986, 0.3871438962989183, 0.1488532571774911, 0.5187002331293636, 0.8137098818752955,
0.521761863717401, 0.4622312310118274, 0.29038411334638825, 0.16194915718170566, 0.5175999923925211, 0.8852230040101133, 0.0218263385047206,
0.08482355352852367, 0.3463638568376264, 0.28627127120619733, 0.9553293378948409, 0.4803391055970835, 0.841635695030805, 0.3556828280031952,
0.06778527221541808, 0.28193560357091596, 0.8399957619031576, 0.03305536359456385, 0.6625039162109645, 0.9300552020023897, 0.8551529138204146,
0.6133216915522418, 0.222427800857393, 0.1315422686800336, 0.6189144989185527, 0.5346184916866876, 0.8348888624532548, 0.6544834567840291,
0.2844062293389934, 0.28780026600883324, 0.5372272015684924, 0.6250226011503823, 0.28119106062279453, 0.49655812908420094, 0.6451488959145951,
0.7362580606834843, 0.44815578616664087, 0.6454760235835586, 0.6794062414265861, 0.045378883014935756, 0.9008388543865096, 0.7949752851269782,
0.4179928876222264, 0.28733419007048644, 0.996902319501908, 0.5690851338677467, 0.9511814013279738, 0.025323788678181636, 0.5594359732604794,
0.1213732595086251, 0.7172624313368294, 0.6759328959074691, 0.07252138454885071, 0.17557735158403442, 0.5988895455048769
};
float expected_output[1*3*4*2] = {
-0.556947, -0.42143887, -0.092070885, 0.27404794, -0.41886684, 0.0862887, -0.25001016, -0.342721, 0.020730592, 0.04016919, -0.69839877,
-0.06136704, 0.14186388, -0.11655602, -0.23489095, -0.3845829, -0.19017771, 0.1595885, -0.18308741, -0.3071209, -0.5848686, -0.22509028,
-0.6023201, -0.14448485
};
float *output;
float kernel[2*3*3*3] = {
-0.25291282, 0.22402048, 0.028642118, -0.14615723, -0.27362752, -0.34801802, -0.2759148, 0.19594926, -0.25029412, 0.34606284, 0.10376671,
-0.1015394, 0.23616093, 0.2134214, 0.35285157, 0.05893758, 0.0024731457, -0.17143056, 0.35758412, 0.2186206, -0.28384736, -0.21206513,
-0.20871592, 0.27070445, 0.25878823, 0.11136332, -0.33737376, 0.08353335, -0.34290665, 0.041805506, -0.09738535, 0.3284936, -0.16838405,
-0.032494456, -0.29193437, 0.033259362, -0.09272635, -0.2802651, -0.28648436, 0.3542878, 0.2432127, -0.24551713, 0.27813476, 0.21024024,
-0.013690501, -0.1350077, -0.07826337, -0.34563828, 0.3220685, -0.07571727, 0.19420576, 0.20783454, 0.18738335, 0.16672492
};
float bias[2] = { -0.4773722, -0.19620377 };
NativeContext ctx;
ctx.class = &dnn_native_class;
ctx.options.conv2d_threads = 1;
params.activation = TANH;
params.has_bias = 1;
params.biases = bias;
params.dilation = 1;
params.input_num = 3;
params.kernel = kernel;
params.kernel_size = 3;
params.output_num = 2;
params.padding_method = VALID;
operands[0].data = input;
operands[0].dims[0] = 1;
operands[0].dims[1] = 5;
operands[0].dims[2] = 6;
operands[0].dims[3] = 3;
operands[1].data = NULL;
input_indexes[0] = 0;
dnn_execute_layer_conv2d(operands, input_indexes, 1, &params, &ctx);
output = operands[1].data;
for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) {
if (fabs(output[i] - expected_output[i]) > EPSON) {
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]);
av_freep(&output);
return 1;
}
}
av_freep(&output);
return 0;
}
int main(int argc, char **argv)
{
if (test_with_valid())
return 1;
if (test_with_same_dilate())
return 1;
return 0;
}