mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-11-26 19:01:44 +02:00
Mirror of https://git.ffmpeg.org/ffmpeg.git
ffbd1d2b00
This work is sponsored by, and copyright, Google. The filter coefficients are signed values, where the product of the multiplication with one individual filter coefficient doesn't overflow a 16 bit signed value (the largest filter coefficient is 127). But when the products are accumulated, the resulting sum can overflow the 16 bit signed range. Instead of accumulating in 32 bit, we accumulate the largest product (either index 3 or 4) last with a saturated addition. (The VP8 MC asm does something similar, but slightly simpler, by accumulating each half of the filter separately. In the VP9 MC filters, each half of the filter can also overflow though, so the largest component has to be handled individually.) Examples of relative speedup compared to the C version, from checkasm: Cortex A7 A8 A9 A53 vp9_avg4_neon: 1.71 1.15 1.42 1.49 vp9_avg8_neon: 2.51 3.63 3.14 2.58 vp9_avg16_neon: 2.95 6.76 3.01 2.84 vp9_avg32_neon: 3.29 6.64 2.85 3.00 vp9_avg64_neon: 3.47 6.67 3.14 2.80 vp9_avg_8tap_smooth_4h_neon: 3.22 4.73 2.76 4.67 vp9_avg_8tap_smooth_4hv_neon: 3.67 4.76 3.28 4.71 vp9_avg_8tap_smooth_4v_neon: 5.52 7.60 4.60 6.31 vp9_avg_8tap_smooth_8h_neon: 6.22 9.04 5.12 9.32 vp9_avg_8tap_smooth_8hv_neon: 6.38 8.21 5.72 8.17 vp9_avg_8tap_smooth_8v_neon: 9.22 12.66 8.15 11.10 vp9_avg_8tap_smooth_64h_neon: 7.02 10.23 5.54 11.58 vp9_avg_8tap_smooth_64hv_neon: 6.76 9.46 5.93 9.40 vp9_avg_8tap_smooth_64v_neon: 10.76 14.13 9.46 13.37 vp9_put4_neon: 1.11 1.47 1.00 1.21 vp9_put8_neon: 1.23 2.17 1.94 1.48 vp9_put16_neon: 1.63 4.02 1.73 1.97 vp9_put32_neon: 1.56 4.92 2.00 1.96 vp9_put64_neon: 2.10 5.28 2.03 2.35 vp9_put_8tap_smooth_4h_neon: 3.11 4.35 2.63 4.35 vp9_put_8tap_smooth_4hv_neon: 3.67 4.69 3.25 4.71 vp9_put_8tap_smooth_4v_neon: 5.45 7.27 4.49 6.52 vp9_put_8tap_smooth_8h_neon: 5.97 8.18 4.81 8.56 vp9_put_8tap_smooth_8hv_neon: 6.39 7.90 5.64 8.15 vp9_put_8tap_smooth_8v_neon: 9.03 11.84 8.07 11.51 vp9_put_8tap_smooth_64h_neon: 6.78 9.48 4.88 10.89 vp9_put_8tap_smooth_64hv_neon: 6.99 8.87 5.94 9.56 vp9_put_8tap_smooth_64v_neon: 10.69 13.30 9.43 14.34 For the larger 8tap filters, the speedup vs C code is around 5-14x. This is significantly faster than libvpx's implementation of the same functions, at least when comparing the put_8tap_smooth_64 functions (compared to vpx_convolve8_horiz_neon and vpx_convolve8_vert_neon from libvpx). Absolute runtimes from checkasm: Cortex A7 A8 A9 A53 vp9_put_8tap_smooth_64h_neon: 20150.3 14489.4 19733.6 10863.7 libvpx vpx_convolve8_horiz_neon: 52623.3 19736.4 21907.7 25027.7 vp9_put_8tap_smooth_64v_neon: 14455.0 12303.9 13746.4 9628.9 libvpx vpx_convolve8_vert_neon: 42090.0 17706.2 17659.9 16941.2 Thus, on the A9, the horizontal filter is only marginally faster than libvpx, while our version is significantly faster on the other cores, and the vertical filter is significantly faster on all cores. The difference is especially large on the A7. The libvpx implementation does the accumulation in 32 bit, which probably explains most of the differences. Signed-off-by: Martin Storsjö <martin@martin.st> |
||
---|---|---|
compat | ||
doc | ||
libavcodec | ||
libavdevice | ||
libavfilter | ||
libavformat | ||
libavresample | ||
libavutil | ||
libswscale | ||
presets | ||
tests | ||
tools | ||
.gitattributes | ||
.gitignore | ||
.travis.yml | ||
arch.mak | ||
avconv_dxva2.c | ||
avconv_filter.c | ||
avconv_opt.c | ||
avconv_qsv.c | ||
avconv_vaapi.c | ||
avconv_vda.c | ||
avconv_vdpau.c | ||
avconv.c | ||
avconv.h | ||
avplay.c | ||
avprobe.c | ||
Changelog | ||
cmdutils_common_opts.h | ||
cmdutils.c | ||
cmdutils.h | ||
common.mak | ||
configure | ||
COPYING.GPLv2 | ||
COPYING.GPLv3 | ||
COPYING.LGPLv2.1 | ||
COPYING.LGPLv3 | ||
CREDITS | ||
INSTALL | ||
library.mak | ||
LICENSE | ||
Makefile | ||
README | ||
README.md | ||
RELEASE | ||
version.sh |
Libav
Libav is a collection of libraries and tools to process multimedia content such as audio, video, subtitles and related metadata.
Libraries
libavcodec
provides implementation of a wider range of codecs.libavformat
implements streaming protocols, container formats and basic I/O access.libavutil
includes hashers, decompressors and miscellaneous utility functions.libavfilter
provides a mean to alter decoded Audio and Video through chain of filters.libavdevice
provides an abstraction to access capture and playback devices.libavresample
implements audio mixing and resampling routines.libswscale
implements color conversion and scaling routines.
Tools
- avconv is a command line toolbox to manipulate, convert and stream multimedia content.
- avplay is a minimalistic multimedia player.
- avprobe is a simple analisys tool to inspect multimedia content.
- Additional small tools such as
aviocat
,ismindex
andqt-faststart
.
Documentation
The offline documentation is available in the doc/ directory.
The online documentation is available in the main website and in the wiki.
Examples
Conding examples are available in the doc/example directory.
License
Libav codebase is mainly LGPL-licensed with optional components licensed under GPL. Please refer to the LICENSE file for detailed information.