1
0
mirror of https://github.com/vcmi/vcmi.git synced 2024-11-24 08:32:34 +02:00
vcmi/lib/rmg/WaterAdopter.cpp
Andrey Filipenkov ff635edc0b wrap all library code into namespace if VCMI_LIB_NAMESPACE is defined
preparation for having client and server in a single process
2022-09-24 15:55:21 +03:00

266 lines
6.6 KiB
C++

/*
* WaterAdopter.cpp, part of VCMI engine
*
* Authors: listed in file AUTHORS in main folder
*
* License: GNU General Public License v2.0 or later
* Full text of license available in license.txt file, in main folder
*
*/
#include "StdInc.h"
#include "WaterAdopter.h"
#include "CMapGenerator.h"
#include "RmgMap.h"
#include "../mapping/CMap.h"
#include "../mapping/CMapEditManager.h"
#include "../mapObjects/CObjectClassesHandler.h"
#include "RmgPath.h"
#include "RmgObject.h"
#include "ObjectManager.h"
#include "Functions.h"
#include "RoadPlacer.h"
#include "TreasurePlacer.h"
#include "TownPlacer.h"
#include "ConnectionsPlacer.h"
#include "TileInfo.h"
VCMI_LIB_NAMESPACE_BEGIN
void WaterAdopter::process()
{
createWater(map.getMapGenOptions().getWaterContent());
}
void WaterAdopter::init()
{
//make dependencies
DEPENDENCY_ALL(WaterAdopter);
DEPENDENCY(TownPlacer);
POSTFUNCTION(ConnectionsPlacer);
POSTFUNCTION(TreasurePlacer);
}
void WaterAdopter::createWater(EWaterContent::EWaterContent waterContent)
{
if(waterContent == EWaterContent::NONE || zone.isUnderground() || zone.getType() == ETemplateZoneType::WATER)
return; //do nothing
distanceMap = zone.area().computeDistanceMap(reverseDistanceMap);
//add border tiles as water for ISLANDS
if(waterContent == EWaterContent::ISLANDS)
{
waterArea.unite(collectDistantTiles(zone, zone.getSize() + 1));
waterArea.unite(zone.area().getBorder());
}
//protect some parts from water for NORMAL
if(waterContent == EWaterContent::NORMAL)
{
waterArea.unite(collectDistantTiles(zone, zone.getSize() - 1));
auto sliceStart = RandomGeneratorUtil::nextItem(reverseDistanceMap[0], generator.rand);
auto sliceEnd = RandomGeneratorUtil::nextItem(reverseDistanceMap[0], generator.rand);
//at least 25% without water
bool endPassed = false;
for(int counter = 0; counter < reverseDistanceMap[0].size() / 4 || !endPassed; ++sliceStart, ++counter)
{
if(sliceStart == reverseDistanceMap[0].end())
sliceStart = reverseDistanceMap[0].begin();
if(sliceStart == sliceEnd)
endPassed = true;
noWaterArea.add(*sliceStart);
}
rmg::Area noWaterSlice;
for(int i = 1; i < reverseDistanceMap.size(); ++i)
{
for(auto & t : reverseDistanceMap[i])
{
if(noWaterArea.distanceSqr(t) < 3)
noWaterSlice.add(t);
}
noWaterArea.unite(noWaterSlice);
}
}
//generating some irregularity of coast
int coastIdMax = sqrt(reverseDistanceMap.size()); //size of coastTilesMap shows the most distant tile from water
assert(coastIdMax > 0);
std::list<int3> tilesQueue;
rmg::Tileset tilesChecked;
for(int coastId = coastIdMax; coastId >= 0; --coastId)
{
//amount of iterations shall be proportion of coast perimeter
const int coastLength = reverseDistanceMap[coastId].size() / (coastId + 3);
for(int coastIter = 0; coastIter < coastLength; ++coastIter)
{
int3 tile = *RandomGeneratorUtil::nextItem(reverseDistanceMap[coastId], generator.rand);
if(tilesChecked.find(tile) != tilesChecked.end())
continue;
if(map.isUsed(tile) || map.isFree(tile)) //prevent placing water nearby town
continue;
tilesQueue.push_back(tile);
tilesChecked.insert(tile);
}
}
//if tile is marked as water - connect it with "big" water
while(!tilesQueue.empty())
{
int3 src = tilesQueue.front();
tilesQueue.pop_front();
if(waterArea.contains(src))
continue;
waterArea.add(src);
map.foreach_neighbour(src, [&src, this, &tilesChecked, &tilesQueue](const int3 & dst)
{
if(tilesChecked.count(dst))
return;
if(distanceMap[dst] >= 0 && distanceMap[src] - distanceMap[dst] == 1)
{
tilesQueue.push_back(dst);
tilesChecked.insert(dst);
}
});
}
waterArea.subtract(noWaterArea);
//start filtering of narrow places and coast atrifacts
rmg::Area waterAdd;
for(int coastId = 1; coastId <= coastIdMax; ++coastId)
{
for(auto& tile : reverseDistanceMap[coastId])
{
//collect neighbout water tiles
auto collectionLambda = [this](const int3 & t, std::set<int3> & outCollection)
{
if(waterArea.contains(t))
{
reverseDistanceMap[0].insert(t);
outCollection.insert(t);
}
};
std::set<int3> waterCoastDirect, waterCoastDiag;
map.foreachDirectNeighbour(tile, std::bind(collectionLambda, std::placeholders::_1, std::ref(waterCoastDirect)));
map.foreachDiagonalNeighbour(tile, std::bind(collectionLambda, std::placeholders::_1, std::ref(waterCoastDiag)));
int waterCoastDirectNum = waterCoastDirect.size();
int waterCoastDiagNum = waterCoastDiag.size();
//remove tiles which are mostly covered by water
if(waterCoastDirectNum >= 3)
{
waterAdd.add(tile);
continue;
}
if(waterCoastDiagNum == 4 && waterCoastDirectNum == 2)
{
waterAdd.add(tile);
continue;
}
if(waterCoastDirectNum == 2 && waterCoastDiagNum >= 2)
{
int3 diagSum, dirSum;
for(auto & i : waterCoastDiag)
diagSum += i - tile;
for(auto & i : waterCoastDirect)
dirSum += i - tile;
if(diagSum == int3() || dirSum == int3())
{
waterAdd.add(tile);
continue;
}
if(waterCoastDiagNum == 3 && diagSum != dirSum)
{
waterAdd.add(tile);
continue;
}
}
}
}
waterArea.unite(waterAdd);
//filtering tiny "lakes"
for(auto& tile : reverseDistanceMap[0]) //now it's only coast-water tiles
{
if(!waterArea.contains(tile)) //for ground tiles
continue;
std::vector<int3> groundCoast;
map.foreachDirectNeighbour(tile, [this, &groundCoast](const int3 & t)
{
if(!waterArea.contains(t) && zone.area().contains(t)) //for ground tiles of same zone
{
groundCoast.push_back(t);
}
});
if(groundCoast.size() >= 3)
{
waterArea.erase(tile);
}
else
{
if(groundCoast.size() == 2)
{
if(groundCoast[0] + groundCoast[1] == int3())
{
waterArea.erase(tile);
}
}
}
}
map.getZones()[waterZoneId]->area().unite(waterArea);
zone.area().subtract(waterArea);
zone.areaPossible().subtract(waterArea);
distanceMap = zone.area().computeDistanceMap(reverseDistanceMap);
}
void WaterAdopter::setWaterZone(TRmgTemplateZoneId water)
{
waterZoneId = water;
}
rmg::Area WaterAdopter::getCoastTiles() const
{
if(reverseDistanceMap.empty())
return rmg::Area();
return rmg::Area(reverseDistanceMap.at(0));
}
char WaterAdopter::dump(const int3 & t)
{
if(noWaterArea.contains(t))
return 'X';
if(waterArea.contains(t))
return '~';
auto distanceMapIter = distanceMap.find(t);
if(distanceMapIter != distanceMap.end())
{
if(distanceMapIter->second > 9)
return '%';
auto distStr = std::to_string(distanceMapIter->second);
if(distStr.length() > 0)
return distStr[0];
}
return Modificator::dump(t);
}
VCMI_LIB_NAMESPACE_END