1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-11-27 22:28:29 +02:00

fix: introduce Kleisli type

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
This commit is contained in:
Dr. Carsten Leue
2025-11-07 14:35:46 +01:00
parent b3bd5e9ad3
commit aa5e908810
90 changed files with 9616 additions and 5168 deletions

View File

@@ -18,12 +18,12 @@ package readereither
import "github.com/IBM/fp-go/v2/readereither" import "github.com/IBM/fp-go/v2/readereither"
// TraverseArray transforms an array // TraverseArray transforms an array
func TraverseArray[A, B any](f func(A) ReaderEither[B]) func([]A) ReaderEither[[]B] { func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return readereither.TraverseArray(f) return readereither.TraverseArray(f)
} }
// TraverseArrayWithIndex transforms an array // TraverseArrayWithIndex transforms an array
func TraverseArrayWithIndex[A, B any](f func(int, A) ReaderEither[B]) func([]A) ReaderEither[[]B] { func TraverseArrayWithIndex[A, B any](f func(int, A) ReaderEither[B]) Kleisli[[]A, []B] {
return readereither.TraverseArrayWithIndex(f) return readereither.TraverseArrayWithIndex(f)
} }

View File

@@ -18,6 +18,7 @@ package readereither
import ( import (
"context" "context"
L "github.com/IBM/fp-go/v2/optics/lens"
G "github.com/IBM/fp-go/v2/readereither/generic" G "github.com/IBM/fp-go/v2/readereither/generic"
) )
@@ -80,8 +81,8 @@ func Do[S any](
// ) // )
func Bind[S1, S2, T any]( func Bind[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
f func(S1) ReaderEither[T], f Kleisli[S1, T],
) func(ReaderEither[S1]) ReaderEither[S2] { ) Kleisli[ReaderEither[S1], S2] {
return G.Bind[ReaderEither[S1], ReaderEither[S2], ReaderEither[T], context.Context, error, S1, S2, T](setter, f) return G.Bind[ReaderEither[S1], ReaderEither[S2], ReaderEither[T], context.Context, error, S1, S2, T](setter, f)
} }
@@ -89,7 +90,7 @@ func Bind[S1, S2, T any](
func Let[S1, S2, T any]( func Let[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
f func(S1) T, f func(S1) T,
) func(ReaderEither[S1]) ReaderEither[S2] { ) Kleisli[ReaderEither[S1], S2] {
return G.Let[ReaderEither[S1], ReaderEither[S2], context.Context, error, S1, S2, T](setter, f) return G.Let[ReaderEither[S1], ReaderEither[S2], context.Context, error, S1, S2, T](setter, f)
} }
@@ -97,14 +98,14 @@ func Let[S1, S2, T any](
func LetTo[S1, S2, T any]( func LetTo[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
b T, b T,
) func(ReaderEither[S1]) ReaderEither[S2] { ) Kleisli[ReaderEither[S1], S2] {
return G.LetTo[ReaderEither[S1], ReaderEither[S2], context.Context, error, S1, S2, T](setter, b) return G.LetTo[ReaderEither[S1], ReaderEither[S2], context.Context, error, S1, S2, T](setter, b)
} }
// BindTo initializes a new state [S1] from a value [T] // BindTo initializes a new state [S1] from a value [T]
func BindTo[S1, T any]( func BindTo[S1, T any](
setter func(T) S1, setter func(T) S1,
) func(ReaderEither[T]) ReaderEither[S1] { ) Kleisli[ReaderEither[T], S1] {
return G.BindTo[ReaderEither[S1], ReaderEither[T], context.Context, error, S1, T](setter) return G.BindTo[ReaderEither[S1], ReaderEither[T], context.Context, error, S1, T](setter)
} }
@@ -148,6 +149,161 @@ func BindTo[S1, T any](
func ApS[S1, S2, T any]( func ApS[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
fa ReaderEither[T], fa ReaderEither[T],
) func(ReaderEither[S1]) ReaderEither[S2] { ) Kleisli[ReaderEither[S1], S2] {
return G.ApS[ReaderEither[S1], ReaderEither[S2], ReaderEither[T], context.Context, error, S1, S2, T](setter, fa) return G.ApS[ReaderEither[S1], ReaderEither[S2], ReaderEither[T], context.Context, error, S1, S2, T](setter, fa)
} }
// ApSL is a variant of ApS that uses a lens to focus on a specific field in the state.
// Instead of providing a setter function, you provide a lens that knows how to get and set
// the field. This is more convenient when working with nested structures.
//
// Parameters:
// - lens: A lens that focuses on a field of type T within state S
// - fa: A ReaderEither computation that produces a value of type T
//
// Returns:
// - A function that transforms ReaderEither[S] to ReaderEither[S] by setting the focused field
//
// Example:
//
// type Person struct {
// Name string
// Age int
// }
//
// ageLens := lens.MakeLens(
// func(p Person) int { return p.Age },
// func(p Person, a int) Person { p.Age = a; return p },
// )
//
// getAge := func(ctx context.Context) either.Either[error, int] {
// return either.Right[error](30)
// }
//
// result := F.Pipe1(
// readereither.Do(Person{Name: "Alice", Age: 25}),
// readereither.ApSL(ageLens, getAge),
// )
func ApSL[S, T any](
lens L.Lens[S, T],
fa ReaderEither[T],
) Kleisli[ReaderEither[S], S] {
return ApS(lens.Set, fa)
}
// BindL is a variant of Bind that uses a lens to focus on a specific field in the state.
// It combines the lens-based field access with monadic composition, allowing you to:
// 1. Extract a field value using the lens
// 2. Use that value in a computation that may fail
// 3. Update the field with the result
//
// Parameters:
// - lens: A lens that focuses on a field of type T within state S
// - f: A function that takes the current field value and returns a ReaderEither computation
//
// Returns:
// - A function that transforms ReaderEither[S] to ReaderEither[S]
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// increment := func(v int) readereither.ReaderEither[int] {
// return func(ctx context.Context) either.Either[error, int] {
// if v >= 100 {
// return either.Left[int](errors.New("value too large"))
// }
// return either.Right[error](v + 1)
// }
// }
//
// result := F.Pipe1(
// readereither.Of[error](Counter{Value: 42}),
// readereither.BindL(valueLens, increment),
// )
func BindL[S, T any](
lens L.Lens[S, T],
f Kleisli[T, T],
) Kleisli[ReaderEither[S], S] {
return Bind[S, S, T](lens.Set, func(s S) ReaderEither[T] {
return f(lens.Get(s))
})
}
// LetL is a variant of Let that uses a lens to focus on a specific field in the state.
// It applies a pure transformation to the focused field without any effects.
//
// Parameters:
// - lens: A lens that focuses on a field of type T within state S
// - f: A pure function that transforms the field value
//
// Returns:
// - A function that transforms ReaderEither[S] to ReaderEither[S]
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// double := func(v int) int { return v * 2 }
//
// result := F.Pipe1(
// readereither.Of[error](Counter{Value: 21}),
// readereither.LetL(valueLens, double),
// )
// // result when executed will be Right(Counter{Value: 42})
func LetL[S, T any](
lens L.Lens[S, T],
f func(T) T,
) Kleisli[ReaderEither[S], S] {
return Let[S, S, T](lens.Set, func(s S) T {
return f(lens.Get(s))
})
}
// LetToL is a variant of LetTo that uses a lens to focus on a specific field in the state.
// It sets the focused field to a constant value.
//
// Parameters:
// - lens: A lens that focuses on a field of type T within state S
// - b: The constant value to set
//
// Returns:
// - A function that transforms ReaderEither[S] to ReaderEither[S]
//
// Example:
//
// type Config struct {
// Debug bool
// Timeout int
// }
//
// debugLens := lens.MakeLens(
// func(c Config) bool { return c.Debug },
// func(c Config, d bool) Config { c.Debug = d; return c },
// )
//
// result := F.Pipe1(
// readereither.Of[error](Config{Debug: true, Timeout: 30}),
// readereither.LetToL(debugLens, false),
// )
// // result when executed will be Right(Config{Debug: false, Timeout: 30})
func LetToL[S, T any](
lens L.Lens[S, T],
b T,
) Kleisli[ReaderEither[S], S] {
return LetTo[S, S, T](lens.Set, b)
}

View File

@@ -28,26 +28,26 @@ func Curry0[A any](f func(context.Context) (A, error)) ReaderEither[A] {
return readereither.Curry0(f) return readereither.Curry0(f)
} }
func Curry1[T1, A any](f func(context.Context, T1) (A, error)) func(T1) ReaderEither[A] { func Curry1[T1, A any](f func(context.Context, T1) (A, error)) Kleisli[T1, A] {
return readereither.Curry1(f) return readereither.Curry1(f)
} }
func Curry2[T1, T2, A any](f func(context.Context, T1, T2) (A, error)) func(T1) func(T2) ReaderEither[A] { func Curry2[T1, T2, A any](f func(context.Context, T1, T2) (A, error)) func(T1) Kleisli[T2, A] {
return readereither.Curry2(f) return readereither.Curry2(f)
} }
func Curry3[T1, T2, T3, A any](f func(context.Context, T1, T2, T3) (A, error)) func(T1) func(T2) func(T3) ReaderEither[A] { func Curry3[T1, T2, T3, A any](f func(context.Context, T1, T2, T3) (A, error)) func(T1) func(T2) Kleisli[T3, A] {
return readereither.Curry3(f) return readereither.Curry3(f)
} }
func Uncurry1[T1, A any](f func(T1) ReaderEither[A]) func(context.Context, T1) (A, error) { func Uncurry1[T1, A any](f Kleisli[T1, A]) func(context.Context, T1) (A, error) {
return readereither.Uncurry1(f) return readereither.Uncurry1(f)
} }
func Uncurry2[T1, T2, A any](f func(T1) func(T2) ReaderEither[A]) func(context.Context, T1, T2) (A, error) { func Uncurry2[T1, T2, A any](f func(T1) Kleisli[T2, A]) func(context.Context, T1, T2) (A, error) {
return readereither.Uncurry2(f) return readereither.Uncurry2(f)
} }
func Uncurry3[T1, T2, T3, A any](f func(T1) func(T2) func(T3) ReaderEither[A]) func(context.Context, T1, T2, T3) (A, error) { func Uncurry3[T1, T2, T3, A any](f func(T1) func(T2) Kleisli[T3, A]) func(context.Context, T1, T2, T3) (A, error) {
return readereither.Uncurry3(f) return readereither.Uncurry3(f)
} }

View File

@@ -28,7 +28,7 @@ func From0[A any](f func(context.Context) (A, error)) func() ReaderEither[A] {
return readereither.From0(f) return readereither.From0(f)
} }
func From1[T1, A any](f func(context.Context, T1) (A, error)) func(T1) ReaderEither[A] { func From1[T1, A any](f func(context.Context, T1) (A, error)) Kleisli[T1, A] {
return readereither.From1(f) return readereither.From1(f)
} }

View File

@@ -41,11 +41,11 @@ func Map[A, B any](f func(A) B) Operator[A, B] {
return readereither.Map[context.Context, error](f) return readereither.Map[context.Context, error](f)
} }
func MonadChain[A, B any](ma ReaderEither[A], f func(A) ReaderEither[B]) ReaderEither[B] { func MonadChain[A, B any](ma ReaderEither[A], f Kleisli[A, B]) ReaderEither[B] {
return readereither.MonadChain(ma, f) return readereither.MonadChain(ma, f)
} }
func Chain[A, B any](f func(A) ReaderEither[B]) Operator[A, B] { func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
return readereither.Chain(f) return readereither.Chain(f)
} }
@@ -61,11 +61,11 @@ func Ap[A, B any](fa ReaderEither[A]) func(ReaderEither[func(A) B]) ReaderEither
return readereither.Ap[B](fa) return readereither.Ap[B](fa)
} }
func FromPredicate[A any](pred func(A) bool, onFalse func(A) error) func(A) ReaderEither[A] { func FromPredicate[A any](pred func(A) bool, onFalse func(A) error) Kleisli[A, A] {
return readereither.FromPredicate[context.Context](pred, onFalse) return readereither.FromPredicate[context.Context](pred, onFalse)
} }
func OrElse[A any](onLeft func(error) ReaderEither[A]) func(ReaderEither[A]) ReaderEither[A] { func OrElse[A any](onLeft Kleisli[error, A]) Kleisli[ReaderEither[A], A] {
return readereither.OrElse(onLeft) return readereither.OrElse(onLeft)
} }

View File

@@ -31,5 +31,6 @@ type (
// ReaderEither is a specialization of the Reader monad for the typical golang scenario // ReaderEither is a specialization of the Reader monad for the typical golang scenario
ReaderEither[A any] = readereither.ReaderEither[context.Context, error, A] ReaderEither[A any] = readereither.ReaderEither[context.Context, error, A]
Operator[A, B any] = reader.Reader[ReaderEither[A], ReaderEither[B]] Kleisli[A, B any] = reader.Reader[A, ReaderEither[B]]
Operator[A, B any] = Kleisli[ReaderEither[A], B]
) )

View File

@@ -19,6 +19,7 @@ import (
"github.com/IBM/fp-go/v2/internal/apply" "github.com/IBM/fp-go/v2/internal/apply"
"github.com/IBM/fp-go/v2/internal/chain" "github.com/IBM/fp-go/v2/internal/chain"
"github.com/IBM/fp-go/v2/internal/functor" "github.com/IBM/fp-go/v2/internal/functor"
L "github.com/IBM/fp-go/v2/optics/lens"
) )
// Do creates an empty context of type [S] to be used with the [Bind] operation. // Do creates an empty context of type [S] to be used with the [Bind] operation.
@@ -31,6 +32,8 @@ import (
// Config Config // Config Config
// } // }
// result := readerioeither.Do(State{}) // result := readerioeither.Do(State{})
//
//go:inline
func Do[S any]( func Do[S any](
empty S, empty S,
) ReaderIOEither[S] { ) ReaderIOEither[S] {
@@ -79,10 +82,12 @@ func Do[S any](
// }, // },
// ), // ),
// ) // )
//
//go:inline
func Bind[S1, S2, T any]( func Bind[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
f func(S1) ReaderIOEither[T], f Kleisli[S1, T],
) func(ReaderIOEither[S1]) ReaderIOEither[S2] { ) Operator[S1, S2] {
return chain.Bind( return chain.Bind(
Chain[S1, S2], Chain[S1, S2],
Map[T, S2], Map[T, S2],
@@ -92,10 +97,12 @@ func Bind[S1, S2, T any](
} }
// Let attaches the result of a computation to a context [S1] to produce a context [S2] // Let attaches the result of a computation to a context [S1] to produce a context [S2]
//
//go:inline
func Let[S1, S2, T any]( func Let[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
f func(S1) T, f func(S1) T,
) func(ReaderIOEither[S1]) ReaderIOEither[S2] { ) Operator[S1, S2] {
return functor.Let( return functor.Let(
Map[S1, S2], Map[S1, S2],
setter, setter,
@@ -104,10 +111,12 @@ func Let[S1, S2, T any](
} }
// LetTo attaches the a value to a context [S1] to produce a context [S2] // LetTo attaches the a value to a context [S1] to produce a context [S2]
//
//go:inline
func LetTo[S1, S2, T any]( func LetTo[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
b T, b T,
) func(ReaderIOEither[S1]) ReaderIOEither[S2] { ) Operator[S1, S2] {
return functor.LetTo( return functor.LetTo(
Map[S1, S2], Map[S1, S2],
setter, setter,
@@ -116,6 +125,8 @@ func LetTo[S1, S2, T any](
} }
// BindTo initializes a new state [S1] from a value [T] // BindTo initializes a new state [S1] from a value [T]
//
//go:inline
func BindTo[S1, T any]( func BindTo[S1, T any](
setter func(T) S1, setter func(T) S1,
) Operator[T, S1] { ) Operator[T, S1] {
@@ -166,10 +177,12 @@ func BindTo[S1, T any](
// getConfig, // getConfig,
// ), // ),
// ) // )
//
//go:inline
func ApS[S1, S2, T any]( func ApS[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
fa ReaderIOEither[T], fa ReaderIOEither[T],
) func(ReaderIOEither[S1]) ReaderIOEither[S2] { ) Operator[S1, S2] {
return apply.ApS( return apply.ApS(
Ap[S2, T], Ap[S2, T],
Map[S1, func(T) S2], Map[S1, func(T) S2],
@@ -177,3 +190,152 @@ func ApS[S1, S2, T any](
fa, fa,
) )
} }
// ApSL attaches a value to a context using a lens-based setter.
// This is a convenience function that combines ApS with a lens, allowing you to use
// optics to update nested structures in a more composable way.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// This eliminates the need to manually write setter functions.
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
//
// userLens := lens.MakeLens(
// func(s State) User { return s.User },
// func(s State, u User) State { s.User = u; return s },
// )
//
// getUser := func(ctx context.Context) ioeither.IOEither[error, User] {
// return ioeither.TryCatch(func() (User, error) {
// return fetchUser(ctx)
// })
// }
// result := F.Pipe2(
// readerioeither.Of(State{}),
// readerioeither.ApSL(userLens, getUser),
// )
//
//go:inline
func ApSL[S, T any](
lens L.Lens[S, T],
fa ReaderIOEither[T],
) Operator[S, S] {
return ApS(lens.Set, fa)
}
// BindL is a variant of Bind that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The function f receives the current value of the focused field and
// returns a ReaderIOEither computation that produces an updated value.
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
//
// userLens := lens.MakeLens(
// func(s State) User { return s.User },
// func(s State, u User) State { s.User = u; return s },
// )
//
// result := F.Pipe2(
// readerioeither.Do(State{}),
// readerioeither.BindL(userLens, func(user User) readerioeither.ReaderIOEither[User] {
// return func(ctx context.Context) ioeither.IOEither[error, User] {
// return ioeither.TryCatch(func() (User, error) {
// return fetchUser(ctx)
// })
// }
// }),
// )
//
//go:inline
func BindL[S, T any](
lens L.Lens[S, T],
f Kleisli[T, T],
) Operator[S, S] {
return Bind[S, S, T](lens.Set, func(s S) ReaderIOEither[T] {
return f(lens.Get(s))
})
}
// LetL is a variant of Let that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The function f receives the current value of the focused field and
// returns a new value (without wrapping in a ReaderIOEither).
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
//
// userLens := lens.MakeLens(
// func(s State) User { return s.User },
// func(s State, u User) State { s.User = u; return s },
// )
//
// result := F.Pipe2(
// readerioeither.Do(State{User: User{Name: "Alice"}}),
// readerioeither.LetL(userLens, func(user User) User {
// user.Name = "Bob"
// return user
// }),
// )
//
//go:inline
func LetL[S, T any](
lens L.Lens[S, T],
f func(T) T,
) Operator[S, S] {
return Let[S, S, T](lens.Set, func(s S) T {
return f(lens.Get(s))
})
}
// LetToL is a variant of LetTo that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The value b is set directly to the focused field.
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
//
// userLens := lens.MakeLens(
// func(s State) User { return s.User },
// func(s State, u User) State { s.User = u; return s },
// )
//
// newUser := User{Name: "Bob", ID: 123}
// result := F.Pipe2(
// readerioeither.Do(State{}),
// readerioeither.LetToL(userLens, newUser),
// )
//
//go:inline
func LetToL[S, T any](
lens L.Lens[S, T],
b T,
) Operator[S, S] {
return LetTo[S, S, T](lens.Set, b)
}

View File

@@ -22,6 +22,7 @@ import (
E "github.com/IBM/fp-go/v2/either" E "github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function" F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/utils" "github.com/IBM/fp-go/v2/internal/utils"
O "github.com/IBM/fp-go/v2/option"
"github.com/stretchr/testify/assert" "github.com/stretchr/testify/assert"
) )
@@ -42,7 +43,7 @@ func TestBind(t *testing.T) {
Map(utils.GetFullName), Map(utils.GetFullName),
) )
assert.Equal(t, res(context.Background())(), E.Of[error]("John Doe")) assert.Equal(t, res(t.Context())(), E.Of[error]("John Doe"))
} }
func TestApS(t *testing.T) { func TestApS(t *testing.T) {
@@ -54,5 +55,221 @@ func TestApS(t *testing.T) {
Map(utils.GetFullName), Map(utils.GetFullName),
) )
assert.Equal(t, res(context.Background())(), E.Of[error]("John Doe")) assert.Equal(t, res(t.Context())(), E.Of[error]("John Doe"))
}
func TestApS_WithError(t *testing.T) {
// Test that ApS propagates errors correctly
testErr := assert.AnError
res := F.Pipe3(
Do(utils.Empty),
ApS(utils.SetLastName, Left[string](testErr)),
ApS(utils.SetGivenName, Of("John")),
Map(utils.GetFullName),
)
result := res(t.Context())()
assert.True(t, E.IsLeft(result))
assert.Equal(t, testErr, E.ToError(result))
}
func TestApS_WithSecondError(t *testing.T) {
// Test that ApS propagates errors from the second operation
testErr := assert.AnError
res := F.Pipe3(
Do(utils.Empty),
ApS(utils.SetLastName, Of("Doe")),
ApS(utils.SetGivenName, Left[string](testErr)),
Map(utils.GetFullName),
)
result := res(t.Context())()
assert.True(t, E.IsLeft(result))
assert.Equal(t, testErr, E.ToError(result))
}
func TestApS_MultipleFields(t *testing.T) {
// Test ApS with more than two fields
type Person struct {
FirstName string
MiddleName string
LastName string
Age int
}
setFirstName := func(s string) func(Person) Person {
return func(p Person) Person {
p.FirstName = s
return p
}
}
setMiddleName := func(s string) func(Person) Person {
return func(p Person) Person {
p.MiddleName = s
return p
}
}
setLastName := func(s string) func(Person) Person {
return func(p Person) Person {
p.LastName = s
return p
}
}
setAge := func(a int) func(Person) Person {
return func(p Person) Person {
p.Age = a
return p
}
}
res := F.Pipe5(
Do(Person{}),
ApS(setFirstName, Of("John")),
ApS(setMiddleName, Of("Q")),
ApS(setLastName, Of("Doe")),
ApS(setAge, Of(42)),
Map(func(p Person) Person { return p }),
)
result := res(t.Context())()
assert.True(t, E.IsRight(result))
person := E.ToOption(result)
assert.True(t, O.IsSome(person))
p, _ := O.Unwrap(person)
assert.Equal(t, "John", p.FirstName)
assert.Equal(t, "Q", p.MiddleName)
assert.Equal(t, "Doe", p.LastName)
assert.Equal(t, 42, p.Age)
}
func TestApS_WithDifferentTypes(t *testing.T) {
// Test ApS with different value types
type State struct {
Name string
Count int
Flag bool
}
setName := func(s string) func(State) State {
return func(st State) State {
st.Name = s
return st
}
}
setCount := func(c int) func(State) State {
return func(st State) State {
st.Count = c
return st
}
}
setFlag := func(f bool) func(State) State {
return func(st State) State {
st.Flag = f
return st
}
}
res := F.Pipe4(
Do(State{}),
ApS(setName, Of("test")),
ApS(setCount, Of(100)),
ApS(setFlag, Of(true)),
Map(func(s State) State { return s }),
)
result := res(t.Context())()
assert.True(t, E.IsRight(result))
stateOpt := E.ToOption(result)
assert.True(t, O.IsSome(stateOpt))
state, _ := O.Unwrap(stateOpt)
assert.Equal(t, "test", state.Name)
assert.Equal(t, 100, state.Count)
assert.True(t, state.Flag)
}
func TestApS_EmptyState(t *testing.T) {
// Test ApS starting with an empty state
type Empty struct{}
res := Do(Empty{})
result := res(t.Context())()
assert.True(t, E.IsRight(result))
emptyOpt := E.ToOption(result)
assert.True(t, O.IsSome(emptyOpt))
empty, _ := O.Unwrap(emptyOpt)
assert.Equal(t, Empty{}, empty)
}
func TestApS_ChainedWithBind(t *testing.T) {
// Test mixing ApS with Bind operations
type State struct {
Independent string
Dependent string
}
setIndependent := func(s string) func(State) State {
return func(st State) State {
st.Independent = s
return st
}
}
setDependent := func(s string) func(State) State {
return func(st State) State {
st.Dependent = s
return st
}
}
getDependentValue := func(s State) ReaderIOEither[string] {
// This depends on the Independent field
return Of(s.Independent + "-dependent")
}
res := F.Pipe3(
Do(State{}),
ApS(setIndependent, Of("value")),
Bind(setDependent, getDependentValue),
Map(func(s State) State { return s }),
)
result := res(t.Context())()
assert.True(t, E.IsRight(result))
stateOpt := E.ToOption(result)
assert.True(t, O.IsSome(stateOpt))
state, _ := O.Unwrap(stateOpt)
assert.Equal(t, "value", state.Independent)
assert.Equal(t, "value-dependent", state.Dependent)
}
func TestApS_WithContextCancellation(t *testing.T) {
// Test that ApS respects context cancellation
type State struct {
Value string
}
setValue := func(s string) func(State) State {
return func(st State) State {
st.Value = s
return st
}
}
// Create a computation that would succeed
computation := ApS(setValue, Of("test"))(Do(State{}))
// Create a cancelled context
ctx, cancel := context.WithCancel(t.Context())
cancel()
result := computation(ctx)()
assert.True(t, E.IsLeft(result))
} }

View File

@@ -28,7 +28,7 @@ func Bracket[
A, B, ANY any]( A, B, ANY any](
acquire ReaderIOEither[A], acquire ReaderIOEither[A],
use func(A) ReaderIOEither[B], use Kleisli[A, B],
release func(A, Either[B]) ReaderIOEither[ANY], release func(A, Either[B]) ReaderIOEither[ANY],
) ReaderIOEither[B] { ) ReaderIOEither[B] {
return bracket.Bracket[ReaderIOEither[A], ReaderIOEither[B], ReaderIOEither[ANY], Either[B], A, B]( return bracket.Bracket[ReaderIOEither[A], ReaderIOEither[B], ReaderIOEither[ANY], Either[B], A, B](

View File

@@ -39,6 +39,8 @@ import (
// eqRIE := Eq(eqInt) // eqRIE := Eq(eqInt)
// ctx := context.Background() // ctx := context.Background()
// equal := eqRIE(ctx).Equals(Right[int](42), Right[int](42)) // true // equal := eqRIE(ctx).Equals(Right[int](42), Right[int](42)) // true
//
//go:inline
func Eq[A any](eq eq.Eq[Either[A]]) func(context.Context) eq.Eq[ReaderIOEither[A]] { func Eq[A any](eq eq.Eq[Either[A]]) func(context.Context) eq.Eq[ReaderIOEither[A]] {
return RIOE.Eq[context.Context](eq) return RIOE.Eq[context.Context](eq)
} }

File diff suppressed because it is too large Load Diff

View File

@@ -39,6 +39,8 @@ const (
// - e: The Either value to lift into ReaderIOEither // - e: The Either value to lift into ReaderIOEither
// //
// Returns a ReaderIOEither that produces the given Either value. // Returns a ReaderIOEither that produces the given Either value.
//
//go:inline
func FromEither[A any](e Either[A]) ReaderIOEither[A] { func FromEither[A any](e Either[A]) ReaderIOEither[A] {
return readerioeither.FromEither[context.Context](e) return readerioeither.FromEither[context.Context](e)
} }
@@ -59,6 +61,8 @@ func Left[A any](l error) ReaderIOEither[A] {
// - r: The success value // - r: The success value
// //
// Returns a ReaderIOEither that always succeeds with the given value. // Returns a ReaderIOEither that always succeeds with the given value.
//
//go:inline
func Right[A any](r A) ReaderIOEither[A] { func Right[A any](r A) ReaderIOEither[A] {
return readerioeither.Right[context.Context, error](r) return readerioeither.Right[context.Context, error](r)
} }
@@ -71,6 +75,8 @@ func Right[A any](r A) ReaderIOEither[A] {
// - f: The transformation function // - f: The transformation function
// //
// Returns a new ReaderIOEither with the transformed value. // Returns a new ReaderIOEither with the transformed value.
//
//go:inline
func MonadMap[A, B any](fa ReaderIOEither[A], f func(A) B) ReaderIOEither[B] { func MonadMap[A, B any](fa ReaderIOEither[A], f func(A) B) ReaderIOEither[B] {
return readerioeither.MonadMap(fa, f) return readerioeither.MonadMap(fa, f)
} }
@@ -82,6 +88,8 @@ func MonadMap[A, B any](fa ReaderIOEither[A], f func(A) B) ReaderIOEither[B] {
// - f: The transformation function // - f: The transformation function
// //
// Returns a function that transforms a ReaderIOEither. // Returns a function that transforms a ReaderIOEither.
//
//go:inline
func Map[A, B any](f func(A) B) Operator[A, B] { func Map[A, B any](f func(A) B) Operator[A, B] {
return readerioeither.Map[context.Context, error](f) return readerioeither.Map[context.Context, error](f)
} }
@@ -94,6 +102,8 @@ func Map[A, B any](f func(A) B) Operator[A, B] {
// - b: The constant value to use // - b: The constant value to use
// //
// Returns a new ReaderIOEither with the constant value. // Returns a new ReaderIOEither with the constant value.
//
//go:inline
func MonadMapTo[A, B any](fa ReaderIOEither[A], b B) ReaderIOEither[B] { func MonadMapTo[A, B any](fa ReaderIOEither[A], b B) ReaderIOEither[B] {
return readerioeither.MonadMapTo(fa, b) return readerioeither.MonadMapTo(fa, b)
} }
@@ -105,6 +115,8 @@ func MonadMapTo[A, B any](fa ReaderIOEither[A], b B) ReaderIOEither[B] {
// - b: The constant value to use // - b: The constant value to use
// //
// Returns a function that transforms a ReaderIOEither. // Returns a function that transforms a ReaderIOEither.
//
//go:inline
func MapTo[A, B any](b B) Operator[A, B] { func MapTo[A, B any](b B) Operator[A, B] {
return readerioeither.MapTo[context.Context, error, A](b) return readerioeither.MapTo[context.Context, error, A](b)
} }
@@ -117,7 +129,9 @@ func MapTo[A, B any](b B) Operator[A, B] {
// - f: Function that produces the second ReaderIOEither based on the first's result // - f: Function that produces the second ReaderIOEither based on the first's result
// //
// Returns a new ReaderIOEither representing the sequenced computation. // Returns a new ReaderIOEither representing the sequenced computation.
func MonadChain[A, B any](ma ReaderIOEither[A], f func(A) ReaderIOEither[B]) ReaderIOEither[B] { //
//go:inline
func MonadChain[A, B any](ma ReaderIOEither[A], f Kleisli[A, B]) ReaderIOEither[B] {
return readerioeither.MonadChain(ma, f) return readerioeither.MonadChain(ma, f)
} }
@@ -128,7 +142,9 @@ func MonadChain[A, B any](ma ReaderIOEither[A], f func(A) ReaderIOEither[B]) Rea
// - f: Function that produces the second ReaderIOEither based on the first's result // - f: Function that produces the second ReaderIOEither based on the first's result
// //
// Returns a function that sequences ReaderIOEither computations. // Returns a function that sequences ReaderIOEither computations.
func Chain[A, B any](f func(A) ReaderIOEither[B]) Operator[A, B] { //
//go:inline
func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
return readerioeither.Chain(f) return readerioeither.Chain(f)
} }
@@ -140,7 +156,9 @@ func Chain[A, B any](f func(A) ReaderIOEither[B]) Operator[A, B] {
// - f: Function that produces the second ReaderIOEither // - f: Function that produces the second ReaderIOEither
// //
// Returns a ReaderIOEither with the result of the first computation. // Returns a ReaderIOEither with the result of the first computation.
func MonadChainFirst[A, B any](ma ReaderIOEither[A], f func(A) ReaderIOEither[B]) ReaderIOEither[A] { //
//go:inline
func MonadChainFirst[A, B any](ma ReaderIOEither[A], f Kleisli[A, B]) ReaderIOEither[A] {
return readerioeither.MonadChainFirst(ma, f) return readerioeither.MonadChainFirst(ma, f)
} }
@@ -151,7 +169,9 @@ func MonadChainFirst[A, B any](ma ReaderIOEither[A], f func(A) ReaderIOEither[B]
// - f: Function that produces the second ReaderIOEither // - f: Function that produces the second ReaderIOEither
// //
// Returns a function that sequences ReaderIOEither computations. // Returns a function that sequences ReaderIOEither computations.
func ChainFirst[A, B any](f func(A) ReaderIOEither[B]) Operator[A, A] { //
//go:inline
func ChainFirst[A, B any](f Kleisli[A, B]) Operator[A, A] {
return readerioeither.ChainFirst(f) return readerioeither.ChainFirst(f)
} }
@@ -162,6 +182,8 @@ func ChainFirst[A, B any](f func(A) ReaderIOEither[B]) Operator[A, A] {
// - a: The value to wrap // - a: The value to wrap
// //
// Returns a ReaderIOEither that always succeeds with the given value. // Returns a ReaderIOEither that always succeeds with the given value.
//
//go:inline
func Of[A any](a A) ReaderIOEither[A] { func Of[A any](a A) ReaderIOEither[A] {
return readerioeither.Of[context.Context, error](a) return readerioeither.Of[context.Context, error](a)
} }
@@ -240,6 +262,8 @@ func MonadAp[B, A any](fab ReaderIOEither[func(A) B], fa ReaderIOEither[A]) Read
// - fa: ReaderIOEither containing a value // - fa: ReaderIOEither containing a value
// //
// Returns a ReaderIOEither with the function applied to the value. // Returns a ReaderIOEither with the function applied to the value.
//
//go:inline
func MonadApSeq[B, A any](fab ReaderIOEither[func(A) B], fa ReaderIOEither[A]) ReaderIOEither[B] { func MonadApSeq[B, A any](fab ReaderIOEither[func(A) B], fa ReaderIOEither[A]) ReaderIOEither[B] {
return readerioeither.MonadApSeq(fab, fa) return readerioeither.MonadApSeq(fab, fa)
} }
@@ -251,6 +275,8 @@ func MonadApSeq[B, A any](fab ReaderIOEither[func(A) B], fa ReaderIOEither[A]) R
// - fa: ReaderIOEither containing a value // - fa: ReaderIOEither containing a value
// //
// Returns a function that applies a ReaderIOEither function to the value. // Returns a function that applies a ReaderIOEither function to the value.
//
//go:inline
func Ap[B, A any](fa ReaderIOEither[A]) Operator[func(A) B, B] { func Ap[B, A any](fa ReaderIOEither[A]) Operator[func(A) B, B] {
return function.Bind2nd(MonadAp[B, A], fa) return function.Bind2nd(MonadAp[B, A], fa)
} }
@@ -262,6 +288,8 @@ func Ap[B, A any](fa ReaderIOEither[A]) Operator[func(A) B, B] {
// - fa: ReaderIOEither containing a value // - fa: ReaderIOEither containing a value
// //
// Returns a function that applies a ReaderIOEither function to the value sequentially. // Returns a function that applies a ReaderIOEither function to the value sequentially.
//
//go:inline
func ApSeq[B, A any](fa ReaderIOEither[A]) Operator[func(A) B, B] { func ApSeq[B, A any](fa ReaderIOEither[A]) Operator[func(A) B, B] {
return function.Bind2nd(MonadApSeq[B, A], fa) return function.Bind2nd(MonadApSeq[B, A], fa)
} }
@@ -273,6 +301,8 @@ func ApSeq[B, A any](fa ReaderIOEither[A]) Operator[func(A) B, B] {
// - fa: ReaderIOEither containing a value // - fa: ReaderIOEither containing a value
// //
// Returns a function that applies a ReaderIOEither function to the value in parallel. // Returns a function that applies a ReaderIOEither function to the value in parallel.
//
//go:inline
func ApPar[B, A any](fa ReaderIOEither[A]) Operator[func(A) B, B] { func ApPar[B, A any](fa ReaderIOEither[A]) Operator[func(A) B, B] {
return function.Bind2nd(MonadApPar[B, A], fa) return function.Bind2nd(MonadApPar[B, A], fa)
} }
@@ -285,7 +315,9 @@ func ApPar[B, A any](fa ReaderIOEither[A]) Operator[func(A) B, B] {
// - onFalse: Function to generate an error when predicate fails // - onFalse: Function to generate an error when predicate fails
// //
// Returns a function that converts a value to ReaderIOEither based on the predicate. // Returns a function that converts a value to ReaderIOEither based on the predicate.
func FromPredicate[A any](pred func(A) bool, onFalse func(A) error) func(A) ReaderIOEither[A] { //
//go:inline
func FromPredicate[A any](pred func(A) bool, onFalse func(A) error) Kleisli[A, A] {
return readerioeither.FromPredicate[context.Context](pred, onFalse) return readerioeither.FromPredicate[context.Context](pred, onFalse)
} }
@@ -296,7 +328,9 @@ func FromPredicate[A any](pred func(A) bool, onFalse func(A) error) func(A) Read
// - onLeft: Function that produces an alternative ReaderIOEither from the error // - onLeft: Function that produces an alternative ReaderIOEither from the error
// //
// Returns a function that provides fallback behavior for failed computations. // Returns a function that provides fallback behavior for failed computations.
func OrElse[A any](onLeft func(error) ReaderIOEither[A]) Operator[A, A] { //
//go:inline
func OrElse[A any](onLeft Kleisli[error, A]) Operator[A, A] {
return readerioeither.OrElse[context.Context](onLeft) return readerioeither.OrElse[context.Context](onLeft)
} }
@@ -304,6 +338,8 @@ func OrElse[A any](onLeft func(error) ReaderIOEither[A]) Operator[A, A] {
// This is useful for accessing the [context.Context] within a computation. // This is useful for accessing the [context.Context] within a computation.
// //
// Returns a ReaderIOEither that produces the context. // Returns a ReaderIOEither that produces the context.
//
//go:inline
func Ask() ReaderIOEither[context.Context] { func Ask() ReaderIOEither[context.Context] {
return readerioeither.Ask[context.Context, error]() return readerioeither.Ask[context.Context, error]()
} }
@@ -316,6 +352,8 @@ func Ask() ReaderIOEither[context.Context] {
// - f: Function that produces an Either // - f: Function that produces an Either
// //
// Returns a new ReaderIOEither with the chained computation. // Returns a new ReaderIOEither with the chained computation.
//
//go:inline
func MonadChainEitherK[A, B any](ma ReaderIOEither[A], f func(A) Either[B]) ReaderIOEither[B] { func MonadChainEitherK[A, B any](ma ReaderIOEither[A], f func(A) Either[B]) ReaderIOEither[B] {
return readerioeither.MonadChainEitherK[context.Context](ma, f) return readerioeither.MonadChainEitherK[context.Context](ma, f)
} }
@@ -327,7 +365,9 @@ func MonadChainEitherK[A, B any](ma ReaderIOEither[A], f func(A) Either[B]) Read
// - f: Function that produces an Either // - f: Function that produces an Either
// //
// Returns a function that chains the Either-returning function. // Returns a function that chains the Either-returning function.
func ChainEitherK[A, B any](f func(A) Either[B]) func(ma ReaderIOEither[A]) ReaderIOEither[B] { //
//go:inline
func ChainEitherK[A, B any](f func(A) Either[B]) Operator[A, B] {
return readerioeither.ChainEitherK[context.Context](f) return readerioeither.ChainEitherK[context.Context](f)
} }
@@ -339,6 +379,8 @@ func ChainEitherK[A, B any](f func(A) Either[B]) func(ma ReaderIOEither[A]) Read
// - f: Function that produces an Either // - f: Function that produces an Either
// //
// Returns a ReaderIOEither with the original value if both computations succeed. // Returns a ReaderIOEither with the original value if both computations succeed.
//
//go:inline
func MonadChainFirstEitherK[A, B any](ma ReaderIOEither[A], f func(A) Either[B]) ReaderIOEither[A] { func MonadChainFirstEitherK[A, B any](ma ReaderIOEither[A], f func(A) Either[B]) ReaderIOEither[A] {
return readerioeither.MonadChainFirstEitherK[context.Context](ma, f) return readerioeither.MonadChainFirstEitherK[context.Context](ma, f)
} }
@@ -350,7 +392,9 @@ func MonadChainFirstEitherK[A, B any](ma ReaderIOEither[A], f func(A) Either[B])
// - f: Function that produces an Either // - f: Function that produces an Either
// //
// Returns a function that chains the Either-returning function. // Returns a function that chains the Either-returning function.
func ChainFirstEitherK[A, B any](f func(A) Either[B]) func(ma ReaderIOEither[A]) ReaderIOEither[A] { //
//go:inline
func ChainFirstEitherK[A, B any](f func(A) Either[B]) Operator[A, A] {
return readerioeither.ChainFirstEitherK[context.Context](f) return readerioeither.ChainFirstEitherK[context.Context](f)
} }
@@ -361,6 +405,8 @@ func ChainFirstEitherK[A, B any](f func(A) Either[B]) func(ma ReaderIOEither[A])
// - onNone: Function to generate an error when Option is None // - onNone: Function to generate an error when Option is None
// //
// Returns a function that chains Option-returning functions into ReaderIOEither. // Returns a function that chains Option-returning functions into ReaderIOEither.
//
//go:inline
func ChainOptionK[A, B any](onNone func() error) func(func(A) Option[B]) Operator[A, B] { func ChainOptionK[A, B any](onNone func() error) func(func(A) Option[B]) Operator[A, B] {
return readerioeither.ChainOptionK[context.Context, A, B](onNone) return readerioeither.ChainOptionK[context.Context, A, B](onNone)
} }
@@ -372,6 +418,8 @@ func ChainOptionK[A, B any](onNone func() error) func(func(A) Option[B]) Operato
// - t: The IOEither to convert // - t: The IOEither to convert
// //
// Returns a ReaderIOEither that executes the IOEither. // Returns a ReaderIOEither that executes the IOEither.
//
//go:inline
func FromIOEither[A any](t ioeither.IOEither[error, A]) ReaderIOEither[A] { func FromIOEither[A any](t ioeither.IOEither[error, A]) ReaderIOEither[A] {
return readerioeither.FromIOEither[context.Context](t) return readerioeither.FromIOEither[context.Context](t)
} }
@@ -383,6 +431,8 @@ func FromIOEither[A any](t ioeither.IOEither[error, A]) ReaderIOEither[A] {
// - t: The IO to convert // - t: The IO to convert
// //
// Returns a ReaderIOEither that executes the IO and wraps the result in Right. // Returns a ReaderIOEither that executes the IO and wraps the result in Right.
//
//go:inline
func FromIO[A any](t IO[A]) ReaderIOEither[A] { func FromIO[A any](t IO[A]) ReaderIOEither[A] {
return readerioeither.FromIO[context.Context, error](t) return readerioeither.FromIO[context.Context, error](t)
} }
@@ -395,6 +445,8 @@ func FromIO[A any](t IO[A]) ReaderIOEither[A] {
// - t: The Lazy computation to convert // - t: The Lazy computation to convert
// //
// Returns a ReaderIOEither that executes the Lazy computation and wraps the result in Right. // Returns a ReaderIOEither that executes the Lazy computation and wraps the result in Right.
//
//go:inline
func FromLazy[A any](t Lazy[A]) ReaderIOEither[A] { func FromLazy[A any](t Lazy[A]) ReaderIOEither[A] {
return readerioeither.FromIO[context.Context, error](t) return readerioeither.FromIO[context.Context, error](t)
} }
@@ -420,6 +472,8 @@ func Never[A any]() ReaderIOEither[A] {
// - f: Function that produces an IO // - f: Function that produces an IO
// //
// Returns a new ReaderIOEither with the chained IO computation. // Returns a new ReaderIOEither with the chained IO computation.
//
//go:inline
func MonadChainIOK[A, B any](ma ReaderIOEither[A], f func(A) IO[B]) ReaderIOEither[B] { func MonadChainIOK[A, B any](ma ReaderIOEither[A], f func(A) IO[B]) ReaderIOEither[B] {
return readerioeither.MonadChainIOK(ma, f) return readerioeither.MonadChainIOK(ma, f)
} }
@@ -431,7 +485,9 @@ func MonadChainIOK[A, B any](ma ReaderIOEither[A], f func(A) IO[B]) ReaderIOEith
// - f: Function that produces an IO // - f: Function that produces an IO
// //
// Returns a function that chains the IO-returning function. // Returns a function that chains the IO-returning function.
func ChainIOK[A, B any](f func(A) IO[B]) func(ma ReaderIOEither[A]) ReaderIOEither[B] { //
//go:inline
func ChainIOK[A, B any](f func(A) IO[B]) Operator[A, B] {
return readerioeither.ChainIOK[context.Context, error](f) return readerioeither.ChainIOK[context.Context, error](f)
} }
@@ -443,6 +499,8 @@ func ChainIOK[A, B any](f func(A) IO[B]) func(ma ReaderIOEither[A]) ReaderIOEith
// - f: Function that produces an IO // - f: Function that produces an IO
// //
// Returns a ReaderIOEither with the original value after executing the IO. // Returns a ReaderIOEither with the original value after executing the IO.
//
//go:inline
func MonadChainFirstIOK[A, B any](ma ReaderIOEither[A], f func(A) IO[B]) ReaderIOEither[A] { func MonadChainFirstIOK[A, B any](ma ReaderIOEither[A], f func(A) IO[B]) ReaderIOEither[A] {
return readerioeither.MonadChainFirstIOK(ma, f) return readerioeither.MonadChainFirstIOK(ma, f)
} }
@@ -454,7 +512,9 @@ func MonadChainFirstIOK[A, B any](ma ReaderIOEither[A], f func(A) IO[B]) ReaderI
// - f: Function that produces an IO // - f: Function that produces an IO
// //
// Returns a function that chains the IO-returning function. // Returns a function that chains the IO-returning function.
func ChainFirstIOK[A, B any](f func(A) IO[B]) func(ma ReaderIOEither[A]) ReaderIOEither[A] { //
//go:inline
func ChainFirstIOK[A, B any](f func(A) IO[B]) Operator[A, A] {
return readerioeither.ChainFirstIOK[context.Context, error](f) return readerioeither.ChainFirstIOK[context.Context, error](f)
} }
@@ -465,7 +525,9 @@ func ChainFirstIOK[A, B any](f func(A) IO[B]) func(ma ReaderIOEither[A]) ReaderI
// - f: Function that produces an IOEither // - f: Function that produces an IOEither
// //
// Returns a function that chains the IOEither-returning function. // Returns a function that chains the IOEither-returning function.
func ChainIOEitherK[A, B any](f func(A) ioeither.IOEither[error, B]) func(ma ReaderIOEither[A]) ReaderIOEither[B] { //
//go:inline
func ChainIOEitherK[A, B any](f func(A) ioeither.IOEither[error, B]) Operator[A, B] {
return readerioeither.ChainIOEitherK[context.Context](f) return readerioeither.ChainIOEitherK[context.Context](f)
} }
@@ -476,7 +538,7 @@ func ChainIOEitherK[A, B any](f func(A) ioeither.IOEither[error, B]) func(ma Rea
// - delay: The duration to wait before executing the computation // - delay: The duration to wait before executing the computation
// //
// Returns a function that delays a ReaderIOEither computation. // Returns a function that delays a ReaderIOEither computation.
func Delay[A any](delay time.Duration) func(ma ReaderIOEither[A]) ReaderIOEither[A] { func Delay[A any](delay time.Duration) Operator[A, A] {
return func(ma ReaderIOEither[A]) ReaderIOEither[A] { return func(ma ReaderIOEither[A]) ReaderIOEither[A] {
return func(ctx context.Context) IOEither[A] { return func(ctx context.Context) IOEither[A] {
return func() Either[A] { return func() Either[A] {
@@ -517,6 +579,8 @@ func Timer(delay time.Duration) ReaderIOEither[time.Time] {
// - gen: Lazy generator function that produces a ReaderIOEither // - gen: Lazy generator function that produces a ReaderIOEither
// //
// Returns a ReaderIOEither that generates a fresh computation on each execution. // Returns a ReaderIOEither that generates a fresh computation on each execution.
//
//go:inline
func Defer[A any](gen Lazy[ReaderIOEither[A]]) ReaderIOEither[A] { func Defer[A any](gen Lazy[ReaderIOEither[A]]) ReaderIOEither[A] {
return readerioeither.Defer(gen) return readerioeither.Defer(gen)
} }
@@ -528,6 +592,8 @@ func Defer[A any](gen Lazy[ReaderIOEither[A]]) ReaderIOEither[A] {
// - f: Function that takes a context and returns a function producing (value, error) // - f: Function that takes a context and returns a function producing (value, error)
// //
// Returns a ReaderIOEither that wraps the error-returning function. // Returns a ReaderIOEither that wraps the error-returning function.
//
//go:inline
func TryCatch[A any](f func(context.Context) func() (A, error)) ReaderIOEither[A] { func TryCatch[A any](f func(context.Context) func() (A, error)) ReaderIOEither[A] {
return readerioeither.TryCatch(f, errors.IdentityError) return readerioeither.TryCatch(f, errors.IdentityError)
} }
@@ -540,6 +606,8 @@ func TryCatch[A any](f func(context.Context) func() (A, error)) ReaderIOEither[A
// - second: Lazy alternative ReaderIOEither to use if first fails // - second: Lazy alternative ReaderIOEither to use if first fails
// //
// Returns a ReaderIOEither that tries the first, then the second if first fails. // Returns a ReaderIOEither that tries the first, then the second if first fails.
//
//go:inline
func MonadAlt[A any](first ReaderIOEither[A], second Lazy[ReaderIOEither[A]]) ReaderIOEither[A] { func MonadAlt[A any](first ReaderIOEither[A], second Lazy[ReaderIOEither[A]]) ReaderIOEither[A] {
return readerioeither.MonadAlt(first, second) return readerioeither.MonadAlt(first, second)
} }
@@ -551,6 +619,8 @@ func MonadAlt[A any](first ReaderIOEither[A], second Lazy[ReaderIOEither[A]]) Re
// - second: Lazy alternative ReaderIOEither to use if first fails // - second: Lazy alternative ReaderIOEither to use if first fails
// //
// Returns a function that provides fallback behavior. // Returns a function that provides fallback behavior.
//
//go:inline
func Alt[A any](second Lazy[ReaderIOEither[A]]) Operator[A, A] { func Alt[A any](second Lazy[ReaderIOEither[A]]) Operator[A, A] {
return readerioeither.Alt(second) return readerioeither.Alt(second)
} }
@@ -563,6 +633,8 @@ func Alt[A any](second Lazy[ReaderIOEither[A]]) Operator[A, A] {
// - rdr: The ReaderIOEither to memoize // - rdr: The ReaderIOEither to memoize
// //
// Returns a ReaderIOEither that caches its result after the first execution. // Returns a ReaderIOEither that caches its result after the first execution.
//
//go:inline
func Memoize[A any](rdr ReaderIOEither[A]) ReaderIOEither[A] { func Memoize[A any](rdr ReaderIOEither[A]) ReaderIOEither[A] {
return readerioeither.Memoize(rdr) return readerioeither.Memoize(rdr)
} }
@@ -574,6 +646,8 @@ func Memoize[A any](rdr ReaderIOEither[A]) ReaderIOEither[A] {
// - rdr: The nested ReaderIOEither to flatten // - rdr: The nested ReaderIOEither to flatten
// //
// Returns a flattened ReaderIOEither. // Returns a flattened ReaderIOEither.
//
//go:inline
func Flatten[A any](rdr ReaderIOEither[ReaderIOEither[A]]) ReaderIOEither[A] { func Flatten[A any](rdr ReaderIOEither[ReaderIOEither[A]]) ReaderIOEither[A] {
return readerioeither.Flatten(rdr) return readerioeither.Flatten(rdr)
} }
@@ -586,6 +660,8 @@ func Flatten[A any](rdr ReaderIOEither[ReaderIOEither[A]]) ReaderIOEither[A] {
// - a: The value to apply to the function // - a: The value to apply to the function
// //
// Returns a ReaderIOEither with the function applied to the value. // Returns a ReaderIOEither with the function applied to the value.
//
//go:inline
func MonadFlap[B, A any](fab ReaderIOEither[func(A) B], a A) ReaderIOEither[B] { func MonadFlap[B, A any](fab ReaderIOEither[func(A) B], a A) ReaderIOEither[B] {
return readerioeither.MonadFlap(fab, a) return readerioeither.MonadFlap(fab, a)
} }
@@ -597,6 +673,8 @@ func MonadFlap[B, A any](fab ReaderIOEither[func(A) B], a A) ReaderIOEither[B] {
// - a: The value to apply to the function // - a: The value to apply to the function
// //
// Returns a function that applies the value to a ReaderIOEither function. // Returns a function that applies the value to a ReaderIOEither function.
//
//go:inline
func Flap[B, A any](a A) Operator[func(A) B, B] { func Flap[B, A any](a A) Operator[func(A) B, B] {
return readerioeither.Flap[context.Context, error, B](a) return readerioeither.Flap[context.Context, error, B](a)
} }
@@ -609,7 +687,9 @@ func Flap[B, A any](a A) Operator[func(A) B, B] {
// - onRight: Handler for success case // - onRight: Handler for success case
// //
// Returns a function that folds a ReaderIOEither into a new ReaderIOEither. // Returns a function that folds a ReaderIOEither into a new ReaderIOEither.
func Fold[A, B any](onLeft func(error) ReaderIOEither[B], onRight func(A) ReaderIOEither[B]) Operator[A, B] { //
//go:inline
func Fold[A, B any](onLeft Kleisli[error, B], onRight Kleisli[A, B]) Operator[A, B] {
return readerioeither.Fold(onLeft, onRight) return readerioeither.Fold(onLeft, onRight)
} }
@@ -620,6 +700,8 @@ func Fold[A, B any](onLeft func(error) ReaderIOEither[B], onRight func(A) Reader
// - onLeft: Function to provide a default value from the error // - onLeft: Function to provide a default value from the error
// //
// Returns a function that converts a ReaderIOEither to a ReaderIO. // Returns a function that converts a ReaderIOEither to a ReaderIO.
//
//go:inline
func GetOrElse[A any](onLeft func(error) ReaderIO[A]) func(ReaderIOEither[A]) ReaderIO[A] { func GetOrElse[A any](onLeft func(error) ReaderIO[A]) func(ReaderIOEither[A]) ReaderIO[A] {
return readerioeither.GetOrElse(onLeft) return readerioeither.GetOrElse(onLeft)
} }
@@ -631,6 +713,8 @@ func GetOrElse[A any](onLeft func(error) ReaderIO[A]) func(ReaderIOEither[A]) Re
// - onLeft: Function to transform the error // - onLeft: Function to transform the error
// //
// Returns a function that transforms the error of a ReaderIOEither. // Returns a function that transforms the error of a ReaderIOEither.
//
//go:inline
func OrLeft[A any](onLeft func(error) ReaderIO[error]) Operator[A, A] { func OrLeft[A any](onLeft func(error) ReaderIO[error]) Operator[A, A] {
return readerioeither.OrLeft[A](onLeft) return readerioeither.OrLeft[A](onLeft)
} }

View File

@@ -28,7 +28,7 @@ import (
) )
func TestFromEither(t *testing.T) { func TestFromEither(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test with Right // Test with Right
rightVal := E.Right[error](42) rightVal := E.Right[error](42)
@@ -43,7 +43,7 @@ func TestFromEither(t *testing.T) {
} }
func TestLeftRight(t *testing.T) { func TestLeftRight(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test Left // Test Left
err := errors.New("test error") err := errors.New("test error")
@@ -58,13 +58,13 @@ func TestLeftRight(t *testing.T) {
} }
func TestOf(t *testing.T) { func TestOf(t *testing.T) {
ctx := context.Background() ctx := t.Context()
result := Of(42)(ctx)() result := Of(42)(ctx)()
assert.Equal(t, E.Right[error](42), result) assert.Equal(t, E.Right[error](42), result)
} }
func TestMonadMap(t *testing.T) { func TestMonadMap(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test with Right // Test with Right
result := MonadMap(Right(42), func(x int) int { return x * 2 })(ctx)() result := MonadMap(Right(42), func(x int) int { return x * 2 })(ctx)()
@@ -77,7 +77,7 @@ func TestMonadMap(t *testing.T) {
} }
func TestMonadMapTo(t *testing.T) { func TestMonadMapTo(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test with Right // Test with Right
result := MonadMapTo(Right(42), "hello")(ctx)() result := MonadMapTo(Right(42), "hello")(ctx)()
@@ -90,7 +90,7 @@ func TestMonadMapTo(t *testing.T) {
} }
func TestMonadChain(t *testing.T) { func TestMonadChain(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test with Right // Test with Right
result := MonadChain(Right(42), func(x int) ReaderIOEither[int] { result := MonadChain(Right(42), func(x int) ReaderIOEither[int] {
@@ -113,7 +113,7 @@ func TestMonadChain(t *testing.T) {
} }
func TestMonadChainFirst(t *testing.T) { func TestMonadChainFirst(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test with Right // Test with Right
result := MonadChainFirst(Right(42), func(x int) ReaderIOEither[string] { result := MonadChainFirst(Right(42), func(x int) ReaderIOEither[string] {
@@ -136,7 +136,7 @@ func TestMonadChainFirst(t *testing.T) {
} }
func TestMonadApSeq(t *testing.T) { func TestMonadApSeq(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test with both Right // Test with both Right
fct := Right(func(x int) int { return x * 2 }) fct := Right(func(x int) int { return x * 2 })
@@ -159,7 +159,7 @@ func TestMonadApSeq(t *testing.T) {
} }
func TestMonadApPar(t *testing.T) { func TestMonadApPar(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test with both Right // Test with both Right
fct := Right(func(x int) int { return x * 2 }) fct := Right(func(x int) int { return x * 2 })
@@ -169,7 +169,7 @@ func TestMonadApPar(t *testing.T) {
} }
func TestFromPredicate(t *testing.T) { func TestFromPredicate(t *testing.T) {
ctx := context.Background() ctx := t.Context()
pred := func(x int) bool { return x > 0 } pred := func(x int) bool { return x > 0 }
onFalse := func(x int) error { return fmt.Errorf("value %d is not positive", x) } onFalse := func(x int) error { return fmt.Errorf("value %d is not positive", x) }
@@ -184,7 +184,7 @@ func TestFromPredicate(t *testing.T) {
} }
func TestAsk(t *testing.T) { func TestAsk(t *testing.T) {
ctx := context.WithValue(context.Background(), "key", "value") ctx := context.WithValue(t.Context(), "key", "value")
result := Ask()(ctx)() result := Ask()(ctx)()
assert.True(t, E.IsRight(result)) assert.True(t, E.IsRight(result))
retrievedCtx, _ := E.Unwrap(result) retrievedCtx, _ := E.Unwrap(result)
@@ -192,7 +192,7 @@ func TestAsk(t *testing.T) {
} }
func TestMonadChainEitherK(t *testing.T) { func TestMonadChainEitherK(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test with Right // Test with Right
result := MonadChainEitherK(Right(42), func(x int) E.Either[error, int] { result := MonadChainEitherK(Right(42), func(x int) E.Either[error, int] {
@@ -208,7 +208,7 @@ func TestMonadChainEitherK(t *testing.T) {
} }
func TestMonadChainFirstEitherK(t *testing.T) { func TestMonadChainFirstEitherK(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test with Right // Test with Right
result := MonadChainFirstEitherK(Right(42), func(x int) E.Either[error, string] { result := MonadChainFirstEitherK(Right(42), func(x int) E.Either[error, string] {
@@ -224,7 +224,7 @@ func TestMonadChainFirstEitherK(t *testing.T) {
} }
func TestChainOptionKFunc(t *testing.T) { func TestChainOptionKFunc(t *testing.T) {
ctx := context.Background() ctx := t.Context()
onNone := func() error { return errors.New("none error") } onNone := func() error { return errors.New("none error") }
@@ -243,7 +243,7 @@ func TestChainOptionKFunc(t *testing.T) {
} }
func TestFromIOEither(t *testing.T) { func TestFromIOEither(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test with Right // Test with Right
ioe := func() E.Either[error, int] { ioe := func() E.Either[error, int] {
@@ -262,7 +262,7 @@ func TestFromIOEither(t *testing.T) {
} }
func TestFromIO(t *testing.T) { func TestFromIO(t *testing.T) {
ctx := context.Background() ctx := t.Context()
io := func() int { return 42 } io := func() int { return 42 }
result := FromIO(io)(ctx)() result := FromIO(io)(ctx)()
@@ -270,7 +270,7 @@ func TestFromIO(t *testing.T) {
} }
func TestFromLazy(t *testing.T) { func TestFromLazy(t *testing.T) {
ctx := context.Background() ctx := t.Context()
lazy := func() int { return 42 } lazy := func() int { return 42 }
result := FromLazy(lazy)(ctx)() result := FromLazy(lazy)(ctx)()
@@ -278,7 +278,7 @@ func TestFromLazy(t *testing.T) {
} }
func TestNeverWithCancel(t *testing.T) { func TestNeverWithCancel(t *testing.T) {
ctx, cancel := context.WithCancel(context.Background()) ctx, cancel := context.WithCancel(t.Context())
// Start Never in a goroutine // Start Never in a goroutine
done := make(chan E.Either[error, int]) done := make(chan E.Either[error, int])
@@ -295,7 +295,7 @@ func TestNeverWithCancel(t *testing.T) {
} }
func TestMonadChainIOK(t *testing.T) { func TestMonadChainIOK(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test with Right // Test with Right
result := MonadChainIOK(Right(42), func(x int) func() int { result := MonadChainIOK(Right(42), func(x int) func() int {
@@ -305,7 +305,7 @@ func TestMonadChainIOK(t *testing.T) {
} }
func TestMonadChainFirstIOK(t *testing.T) { func TestMonadChainFirstIOK(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test with Right // Test with Right
result := MonadChainFirstIOK(Right(42), func(x int) func() string { result := MonadChainFirstIOK(Right(42), func(x int) func() string {
@@ -315,7 +315,7 @@ func TestMonadChainFirstIOK(t *testing.T) {
} }
func TestDelayFunc(t *testing.T) { func TestDelayFunc(t *testing.T) {
ctx := context.Background() ctx := t.Context()
delay := 100 * time.Millisecond delay := 100 * time.Millisecond
start := time.Now() start := time.Now()
@@ -328,7 +328,7 @@ func TestDelayFunc(t *testing.T) {
} }
func TestDefer(t *testing.T) { func TestDefer(t *testing.T) {
ctx := context.Background() ctx := t.Context()
count := 0 count := 0
gen := func() ReaderIOEither[int] { gen := func() ReaderIOEither[int] {
@@ -348,7 +348,7 @@ func TestDefer(t *testing.T) {
} }
func TestTryCatch(t *testing.T) { func TestTryCatch(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test success // Test success
result := TryCatch(func(ctx context.Context) func() (int, error) { result := TryCatch(func(ctx context.Context) func() (int, error) {
@@ -369,7 +369,7 @@ func TestTryCatch(t *testing.T) {
} }
func TestMonadAlt(t *testing.T) { func TestMonadAlt(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test with Right (alternative not called) // Test with Right (alternative not called)
result := MonadAlt(Right(42), func() ReaderIOEither[int] { result := MonadAlt(Right(42), func() ReaderIOEither[int] {
@@ -386,7 +386,7 @@ func TestMonadAlt(t *testing.T) {
} }
func TestMemoize(t *testing.T) { func TestMemoize(t *testing.T) {
ctx := context.Background() ctx := t.Context()
count := 0 count := 0
rdr := Memoize(FromLazy(func() int { rdr := Memoize(FromLazy(func() int {
@@ -404,7 +404,7 @@ func TestMemoize(t *testing.T) {
} }
func TestFlatten(t *testing.T) { func TestFlatten(t *testing.T) {
ctx := context.Background() ctx := t.Context()
nested := Right(Right(42)) nested := Right(Right(42))
result := Flatten(nested)(ctx)() result := Flatten(nested)(ctx)()
@@ -412,7 +412,7 @@ func TestFlatten(t *testing.T) {
} }
func TestMonadFlap(t *testing.T) { func TestMonadFlap(t *testing.T) {
ctx := context.Background() ctx := t.Context()
fab := Right(func(x int) int { return x * 2 }) fab := Right(func(x int) int { return x * 2 })
result := MonadFlap(fab, 42)(ctx)() result := MonadFlap(fab, 42)(ctx)()
assert.Equal(t, E.Right[error](84), result) assert.Equal(t, E.Right[error](84), result)
@@ -420,19 +420,19 @@ func TestMonadFlap(t *testing.T) {
func TestWithContext(t *testing.T) { func TestWithContext(t *testing.T) {
// Test with non-canceled context // Test with non-canceled context
ctx := context.Background() ctx := t.Context()
result := WithContext(Right(42))(ctx)() result := WithContext(Right(42))(ctx)()
assert.Equal(t, E.Right[error](42), result) assert.Equal(t, E.Right[error](42), result)
// Test with canceled context // Test with canceled context
ctx, cancel := context.WithCancel(context.Background()) ctx, cancel := context.WithCancel(t.Context())
cancel() cancel()
result = WithContext(Right(42))(ctx)() result = WithContext(Right(42))(ctx)()
assert.True(t, E.IsLeft(result)) assert.True(t, E.IsLeft(result))
} }
func TestMonadAp(t *testing.T) { func TestMonadAp(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test with both Right // Test with both Right
fct := Right(func(x int) int { return x * 2 }) fct := Right(func(x int) int { return x * 2 })
@@ -443,7 +443,7 @@ func TestMonadAp(t *testing.T) {
// Test traverse functions // Test traverse functions
func TestSequenceArray(t *testing.T) { func TestSequenceArray(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test with all Right // Test with all Right
arr := []ReaderIOEither[int]{Right(1), Right(2), Right(3)} arr := []ReaderIOEither[int]{Right(1), Right(2), Right(3)}
@@ -460,7 +460,7 @@ func TestSequenceArray(t *testing.T) {
} }
func TestTraverseArray(t *testing.T) { func TestTraverseArray(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test transformation // Test transformation
arr := []int{1, 2, 3} arr := []int{1, 2, 3}
@@ -473,7 +473,7 @@ func TestTraverseArray(t *testing.T) {
} }
func TestSequenceRecord(t *testing.T) { func TestSequenceRecord(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test with all Right // Test with all Right
rec := map[string]ReaderIOEither[int]{ rec := map[string]ReaderIOEither[int]{
@@ -488,7 +488,7 @@ func TestSequenceRecord(t *testing.T) {
} }
func TestTraverseRecord(t *testing.T) { func TestTraverseRecord(t *testing.T) {
ctx := context.Background() ctx := t.Context()
// Test transformation // Test transformation
rec := map[string]int{"a": 1, "b": 2} rec := map[string]int{"a": 1, "b": 2}
@@ -503,7 +503,7 @@ func TestTraverseRecord(t *testing.T) {
// Test monoid functions // Test monoid functions
func TestAltSemigroup(t *testing.T) { func TestAltSemigroup(t *testing.T) {
ctx := context.Background() ctx := t.Context()
sg := AltSemigroup[int]() sg := AltSemigroup[int]()
@@ -519,7 +519,7 @@ func TestAltSemigroup(t *testing.T) {
// Test Do notation // Test Do notation
func TestDo(t *testing.T) { func TestDo(t *testing.T) {
ctx := context.Background() ctx := t.Context()
type State struct { type State struct {
Value int Value int

View File

@@ -55,7 +55,7 @@ import (
// } // }
// }) // })
// }) // })
func WithResource[A, R, ANY any](onCreate ReaderIOEither[R], onRelease func(R) ReaderIOEither[ANY]) func(func(R) ReaderIOEither[A]) ReaderIOEither[A] { func WithResource[A, R, ANY any](onCreate ReaderIOEither[R], onRelease func(R) ReaderIOEither[ANY]) Kleisli[Kleisli[R, A], A] {
return function.Flow2( return function.Flow2(
function.Bind2nd(function.Flow2[func(R) ReaderIOEither[A], Operator[A, A], R, ReaderIOEither[A], ReaderIOEither[A]], WithContext[A]), function.Bind2nd(function.Flow2[func(R) ReaderIOEither[A], Operator[A, A], R, ReaderIOEither[A], ReaderIOEither[A]], WithContext[A]),
RIE.WithResource[A, context.Context, error, R](WithContext(onCreate), onRelease), RIE.WithResource[A, context.Context, error, R](WithContext(onCreate), onRelease),

View File

@@ -28,7 +28,7 @@ import (
// - f: Function that transforms each element into a ReaderIOEither // - f: Function that transforms each element into a ReaderIOEither
// //
// Returns a function that transforms an array into a ReaderIOEither of an array. // Returns a function that transforms an array into a ReaderIOEither of an array.
func TraverseArray[A, B any](f func(A) ReaderIOEither[B]) func([]A) ReaderIOEither[[]B] { func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return array.Traverse[[]A]( return array.Traverse[[]A](
Of[[]B], Of[[]B],
Map[[]B, func(B) []B], Map[[]B, func(B) []B],
@@ -45,7 +45,7 @@ func TraverseArray[A, B any](f func(A) ReaderIOEither[B]) func([]A) ReaderIOEith
// - f: Function that transforms each element with its index into a ReaderIOEither // - f: Function that transforms each element with its index into a ReaderIOEither
// //
// Returns a function that transforms an array into a ReaderIOEither of an array. // Returns a function that transforms an array into a ReaderIOEither of an array.
func TraverseArrayWithIndex[A, B any](f func(int, A) ReaderIOEither[B]) func([]A) ReaderIOEither[[]B] { func TraverseArrayWithIndex[A, B any](f func(int, A) ReaderIOEither[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex[[]A]( return array.TraverseWithIndex[[]A](
Of[[]B], Of[[]B],
Map[[]B, func(B) []B], Map[[]B, func(B) []B],
@@ -72,7 +72,7 @@ func SequenceArray[A any](ma []ReaderIOEither[A]) ReaderIOEither[[]A] {
// - f: Function that transforms each value into a ReaderIOEither // - f: Function that transforms each value into a ReaderIOEither
// //
// Returns a function that transforms a map into a ReaderIOEither of a map. // Returns a function that transforms a map into a ReaderIOEither of a map.
func TraverseRecord[K comparable, A, B any](f func(A) ReaderIOEither[B]) func(map[K]A) ReaderIOEither[map[K]B] { func TraverseRecord[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A, map[K]B] {
return record.Traverse[map[K]A]( return record.Traverse[map[K]A](
Of[map[K]B], Of[map[K]B],
Map[map[K]B, func(B) map[K]B], Map[map[K]B, func(B) map[K]B],
@@ -89,7 +89,7 @@ func TraverseRecord[K comparable, A, B any](f func(A) ReaderIOEither[B]) func(ma
// - f: Function that transforms each key-value pair into a ReaderIOEither // - f: Function that transforms each key-value pair into a ReaderIOEither
// //
// Returns a function that transforms a map into a ReaderIOEither of a map. // Returns a function that transforms a map into a ReaderIOEither of a map.
func TraverseRecordWithIndex[K comparable, A, B any](f func(K, A) ReaderIOEither[B]) func(map[K]A) ReaderIOEither[map[K]B] { func TraverseRecordWithIndex[K comparable, A, B any](f func(K, A) ReaderIOEither[B]) Kleisli[map[K]A, map[K]B] {
return record.TraverseWithIndex[map[K]A]( return record.TraverseWithIndex[map[K]A](
Of[map[K]B], Of[map[K]B],
Map[map[K]B, func(B) map[K]B], Map[map[K]B, func(B) map[K]B],
@@ -117,7 +117,7 @@ func SequenceRecord[K comparable, A any](ma map[K]ReaderIOEither[A]) ReaderIOEit
// - f: Function that transforms each element into a ReaderIOEither // - f: Function that transforms each element into a ReaderIOEither
// //
// Returns a ReaderIOEither containing an array of transformed values. // Returns a ReaderIOEither containing an array of transformed values.
func MonadTraverseArraySeq[A, B any](as []A, f func(A) ReaderIOEither[B]) ReaderIOEither[[]B] { func MonadTraverseArraySeq[A, B any](as []A, f Kleisli[A, B]) ReaderIOEither[[]B] {
return array.MonadTraverse[[]A]( return array.MonadTraverse[[]A](
Of[[]B], Of[[]B],
Map[[]B, func(B) []B], Map[[]B, func(B) []B],
@@ -134,7 +134,7 @@ func MonadTraverseArraySeq[A, B any](as []A, f func(A) ReaderIOEither[B]) Reader
// - f: Function that transforms each element into a ReaderIOEither // - f: Function that transforms each element into a ReaderIOEither
// //
// Returns a function that transforms an array into a ReaderIOEither of an array. // Returns a function that transforms an array into a ReaderIOEither of an array.
func TraverseArraySeq[A, B any](f func(A) ReaderIOEither[B]) func([]A) ReaderIOEither[[]B] { func TraverseArraySeq[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return array.Traverse[[]A]( return array.Traverse[[]A](
Of[[]B], Of[[]B],
Map[[]B, func(B) []B], Map[[]B, func(B) []B],
@@ -145,7 +145,7 @@ func TraverseArraySeq[A, B any](f func(A) ReaderIOEither[B]) func([]A) ReaderIOE
} }
// TraverseArrayWithIndexSeq uses transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]] // TraverseArrayWithIndexSeq uses transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]]
func TraverseArrayWithIndexSeq[A, B any](f func(int, A) ReaderIOEither[B]) func([]A) ReaderIOEither[[]B] { func TraverseArrayWithIndexSeq[A, B any](f func(int, A) ReaderIOEither[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex[[]A]( return array.TraverseWithIndex[[]A](
Of[[]B], Of[[]B],
Map[[]B, func(B) []B], Map[[]B, func(B) []B],
@@ -167,7 +167,7 @@ func SequenceArraySeq[A any](ma []ReaderIOEither[A]) ReaderIOEither[[]A] {
} }
// MonadTraverseRecordSeq uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]] // MonadTraverseRecordSeq uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]]
func MonadTraverseRecordSeq[K comparable, A, B any](as map[K]A, f func(A) ReaderIOEither[B]) ReaderIOEither[map[K]B] { func MonadTraverseRecordSeq[K comparable, A, B any](as map[K]A, f Kleisli[A, B]) ReaderIOEither[map[K]B] {
return record.MonadTraverse[map[K]A]( return record.MonadTraverse[map[K]A](
Of[map[K]B], Of[map[K]B],
Map[map[K]B, func(B) map[K]B], Map[map[K]B, func(B) map[K]B],
@@ -178,7 +178,7 @@ func MonadTraverseRecordSeq[K comparable, A, B any](as map[K]A, f func(A) Reader
} }
// TraverseRecordSeq uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]] // TraverseRecordSeq uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]]
func TraverseRecordSeq[K comparable, A, B any](f func(A) ReaderIOEither[B]) func(map[K]A) ReaderIOEither[map[K]B] { func TraverseRecordSeq[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A, map[K]B] {
return record.Traverse[map[K]A]( return record.Traverse[map[K]A](
Of[map[K]B], Of[map[K]B],
Map[map[K]B, func(B) map[K]B], Map[map[K]B, func(B) map[K]B],
@@ -189,7 +189,7 @@ func TraverseRecordSeq[K comparable, A, B any](f func(A) ReaderIOEither[B]) func
} }
// TraverseRecordWithIndexSeq uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]] // TraverseRecordWithIndexSeq uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]]
func TraverseRecordWithIndexSeq[K comparable, A, B any](f func(K, A) ReaderIOEither[B]) func(map[K]A) ReaderIOEither[map[K]B] { func TraverseRecordWithIndexSeq[K comparable, A, B any](f func(K, A) ReaderIOEither[B]) Kleisli[map[K]A, map[K]B] {
return record.TraverseWithIndex[map[K]A]( return record.TraverseWithIndex[map[K]A](
Of[map[K]B], Of[map[K]B],
Map[map[K]B, func(B) map[K]B], Map[map[K]B, func(B) map[K]B],
@@ -212,7 +212,7 @@ func SequenceRecordSeq[K comparable, A any](ma map[K]ReaderIOEither[A]) ReaderIO
// - f: Function that transforms each element into a ReaderIOEither // - f: Function that transforms each element into a ReaderIOEither
// //
// Returns a ReaderIOEither containing an array of transformed values. // Returns a ReaderIOEither containing an array of transformed values.
func MonadTraverseArrayPar[A, B any](as []A, f func(A) ReaderIOEither[B]) ReaderIOEither[[]B] { func MonadTraverseArrayPar[A, B any](as []A, f Kleisli[A, B]) ReaderIOEither[[]B] {
return array.MonadTraverse[[]A]( return array.MonadTraverse[[]A](
Of[[]B], Of[[]B],
Map[[]B, func(B) []B], Map[[]B, func(B) []B],
@@ -229,7 +229,7 @@ func MonadTraverseArrayPar[A, B any](as []A, f func(A) ReaderIOEither[B]) Reader
// - f: Function that transforms each element into a ReaderIOEither // - f: Function that transforms each element into a ReaderIOEither
// //
// Returns a function that transforms an array into a ReaderIOEither of an array. // Returns a function that transforms an array into a ReaderIOEither of an array.
func TraverseArrayPar[A, B any](f func(A) ReaderIOEither[B]) func([]A) ReaderIOEither[[]B] { func TraverseArrayPar[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return array.Traverse[[]A]( return array.Traverse[[]A](
Of[[]B], Of[[]B],
Map[[]B, func(B) []B], Map[[]B, func(B) []B],
@@ -240,7 +240,7 @@ func TraverseArrayPar[A, B any](f func(A) ReaderIOEither[B]) func([]A) ReaderIOE
} }
// TraverseArrayWithIndexPar uses transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]] // TraverseArrayWithIndexPar uses transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]]
func TraverseArrayWithIndexPar[A, B any](f func(int, A) ReaderIOEither[B]) func([]A) ReaderIOEither[[]B] { func TraverseArrayWithIndexPar[A, B any](f func(int, A) ReaderIOEither[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex[[]A]( return array.TraverseWithIndex[[]A](
Of[[]B], Of[[]B],
Map[[]B, func(B) []B], Map[[]B, func(B) []B],
@@ -262,7 +262,7 @@ func SequenceArrayPar[A any](ma []ReaderIOEither[A]) ReaderIOEither[[]A] {
} }
// TraverseRecordPar uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]] // TraverseRecordPar uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]]
func TraverseRecordPar[K comparable, A, B any](f func(A) ReaderIOEither[B]) func(map[K]A) ReaderIOEither[map[K]B] { func TraverseRecordPar[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A, map[K]B] {
return record.Traverse[map[K]A]( return record.Traverse[map[K]A](
Of[map[K]B], Of[map[K]B],
Map[map[K]B, func(B) map[K]B], Map[map[K]B, func(B) map[K]B],
@@ -273,7 +273,7 @@ func TraverseRecordPar[K comparable, A, B any](f func(A) ReaderIOEither[B]) func
} }
// TraverseRecordWithIndexPar uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]] // TraverseRecordWithIndexPar uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]]
func TraverseRecordWithIndexPar[K comparable, A, B any](f func(K, A) ReaderIOEither[B]) func(map[K]A) ReaderIOEither[map[K]B] { func TraverseRecordWithIndexPar[K comparable, A, B any](f func(K, A) ReaderIOEither[B]) Kleisli[map[K]A, map[K]B] {
return record.TraverseWithIndex[map[K]A]( return record.TraverseWithIndex[map[K]A](
Of[map[K]B], Of[map[K]B],
Map[map[K]B, func(B) map[K]B], Map[map[K]B, func(B) map[K]B],
@@ -284,7 +284,7 @@ func TraverseRecordWithIndexPar[K comparable, A, B any](f func(K, A) ReaderIOEit
} }
// MonadTraverseRecordPar uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]] // MonadTraverseRecordPar uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]]
func MonadTraverseRecordPar[K comparable, A, B any](as map[K]A, f func(A) ReaderIOEither[B]) ReaderIOEither[map[K]B] { func MonadTraverseRecordPar[K comparable, A, B any](as map[K]A, f Kleisli[A, B]) ReaderIOEither[map[K]B] {
return record.MonadTraverse[map[K]A]( return record.MonadTraverse[map[K]A](
Of[map[K]B], Of[map[K]B],
Map[map[K]B, func(B) map[K]B], Map[map[K]B, func(B) map[K]B],

View File

@@ -99,10 +99,12 @@ type (
// result := fetchUser("123")(ctx)() // result := fetchUser("123")(ctx)()
ReaderIOEither[A any] = readerioeither.ReaderIOEither[context.Context, error, A] ReaderIOEither[A any] = readerioeither.ReaderIOEither[context.Context, error, A]
Kleisli[A, B any] = reader.Reader[A, ReaderIOEither[B]]
// Operator represents a transformation from one ReaderIOEither to another. // Operator represents a transformation from one ReaderIOEither to another.
// This is useful for point-free style composition and building reusable transformations. // This is useful for point-free style composition and building reusable transformations.
// //
// Operator[A, B] is equivalent to func(ReaderIOEither[A]) ReaderIOEither[B] // Operator[A, B] is equivalent to Kleisli[ReaderIOEither[A], B]
// //
// Example usage: // Example usage:
// // Define a reusable transformation // // Define a reusable transformation
@@ -110,5 +112,5 @@ type (
// //
// // Apply the transformation // // Apply the transformation
// result := toUpper(computation) // result := toUpper(computation)
Operator[A, B any] = Reader[ReaderIOEither[A], ReaderIOEither[B]] Operator[A, B any] = Kleisli[ReaderIOEither[A], B]
) )

View File

@@ -16,6 +16,7 @@
package either package either
import ( import (
"github.com/IBM/fp-go/v2/function"
A "github.com/IBM/fp-go/v2/internal/apply" A "github.com/IBM/fp-go/v2/internal/apply"
C "github.com/IBM/fp-go/v2/internal/chain" C "github.com/IBM/fp-go/v2/internal/chain"
F "github.com/IBM/fp-go/v2/internal/functor" F "github.com/IBM/fp-go/v2/internal/functor"
@@ -171,3 +172,204 @@ func ApS[E, S1, S2, T any](
fa, fa,
) )
} }
// ApSL attaches a value to a context using a lens-based setter.
// This is a convenience function that combines ApS with a lens, allowing you to use
// optics to update nested structures in a more composable way.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// This eliminates the need to manually write setter functions and enables working with
// nested fields in a type-safe manner.
//
// Unlike BindL, ApSL uses applicative semantics, meaning the computation fa is independent
// of the current state and can be evaluated concurrently.
//
// Type Parameters:
// - E: Error type for the Either
// - S: Structure type containing the field to update
// - T: Type of the field being updated
//
// Parameters:
// - lens: A Lens[S, T] that focuses on a field of type T within structure S
// - fa: An Either[E, T] computation that produces the value to set
//
// Returns:
// - An endomorphism that updates the focused field in the Either context
//
// Example:
//
// type Person struct {
// Name string
// Age int
// }
//
// ageLens := lens.MakeLens(
// func(p Person) int { return p.Age },
// func(p Person, a int) Person { p.Age = a; return p },
// )
//
// result := F.Pipe2(
// either.Right[error](Person{Name: "Alice", Age: 25}),
// either.ApSL(ageLens, either.Right[error](30)),
// ) // Right(Person{Name: "Alice", Age: 30})
//
//go:inline
func ApSL[E, S, T any](
lens Lens[S, T],
fa Either[E, T],
) Endomorphism[Either[E, S]] {
return ApS(lens.Set, fa)
}
// BindL attaches the result of a computation to a context using a lens-based setter.
// This is a convenience function that combines Bind with a lens, allowing you to use
// optics to update nested structures based on their current values.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The computation function f receives the current value of the focused field and returns
// an Either that produces the new value.
//
// Unlike ApSL, BindL uses monadic sequencing, meaning the computation f can depend on
// the current value of the focused field.
//
// Type Parameters:
// - E: Error type for the Either
// - S: Structure type containing the field to update
// - T: Type of the field being updated
//
// Parameters:
// - lens: A Lens[S, T] that focuses on a field of type T within structure S
// - f: A function that takes the current field value and returns an Either[E, T]
//
// Returns:
// - An endomorphism that updates the focused field based on its current value
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Increment the counter, but fail if it would exceed 100
// increment := func(v int) either.Either[error, int] {
// if v >= 100 {
// return either.Left[int](errors.New("counter overflow"))
// }
// return either.Right[error](v + 1)
// }
//
// result := F.Pipe1(
// either.Right[error](Counter{Value: 42}),
// either.BindL(valueLens, increment),
// ) // Right(Counter{Value: 43})
//
//go:inline
func BindL[E, S, T any](
lens Lens[S, T],
f func(T) Either[E, T],
) Endomorphism[Either[E, S]] {
return Bind[E, S, S, T](lens.Set, function.Flow2(lens.Get, f))
}
// LetL attaches the result of a pure computation to a context using a lens-based setter.
// This is a convenience function that combines Let with a lens, allowing you to use
// optics to update nested structures with pure transformations.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The transformation function f receives the current value of the focused field and returns
// the new value directly (not wrapped in Either).
//
// This is useful for pure transformations that cannot fail, such as mathematical operations,
// string manipulations, or other deterministic updates.
//
// Type Parameters:
// - E: Error type for the Either
// - S: Structure type containing the field to update
// - T: Type of the field being updated
//
// Parameters:
// - lens: A Lens[S, T] that focuses on a field of type T within structure S
// - f: An endomorphism (T → T) that transforms the current field value
//
// Returns:
// - An endomorphism that updates the focused field with the transformed value
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Double the counter value
// double := func(v int) int { return v * 2 }
//
// result := F.Pipe1(
// either.Right[error](Counter{Value: 21}),
// either.LetL(valueLens, double),
// ) // Right(Counter{Value: 42})
//
//go:inline
func LetL[E, S, T any](
lens Lens[S, T],
f Endomorphism[T],
) Endomorphism[Either[E, S]] {
return Let[E, S, S, T](lens.Set, function.Flow2(lens.Get, f))
}
// LetToL attaches a constant value to a context using a lens-based setter.
// This is a convenience function that combines LetTo with a lens, allowing you to use
// optics to set nested fields to specific values.
//
// The lens parameter provides the setter for a field within the structure S.
// Unlike LetL which transforms the current value, LetToL simply replaces it with
// the provided constant value b.
//
// This is useful for resetting fields, initializing values, or setting fields to
// predetermined constants.
//
// Type Parameters:
// - E: Error type for the Either
// - S: Structure type containing the field to update
// - T: Type of the field being updated
//
// Parameters:
// - lens: A Lens[S, T] that focuses on a field of type T within structure S
// - b: The constant value to set the field to
//
// Returns:
// - An endomorphism that sets the focused field to the constant value
//
// Example:
//
// type Config struct {
// Debug bool
// Timeout int
// }
//
// debugLens := lens.MakeLens(
// func(c Config) bool { return c.Debug },
// func(c Config, d bool) Config { c.Debug = d; return c },
// )
//
// result := F.Pipe1(
// either.Right[error](Config{Debug: true, Timeout: 30}),
// either.LetToL(debugLens, false),
// ) // Right(Config{Debug: false, Timeout: 30})
//
//go:inline
func LetToL[E, S, T any](
lens Lens[S, T],
b T,
) Endomorphism[Either[E, S]] {
return LetTo[E, S, S, T](lens.Set, b)
}

View File

@@ -20,6 +20,7 @@ import (
F "github.com/IBM/fp-go/v2/function" F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/utils" "github.com/IBM/fp-go/v2/internal/utils"
L "github.com/IBM/fp-go/v2/optics/lens"
"github.com/stretchr/testify/assert" "github.com/stretchr/testify/assert"
) )
@@ -54,3 +55,307 @@ func TestApS(t *testing.T) {
assert.Equal(t, res, Of[error]("John Doe")) assert.Equal(t, res, Of[error]("John Doe"))
} }
// Test types for lens-based operations
type Counter struct {
Value int
}
type Person struct {
Name string
Age int
}
type Config struct {
Debug bool
Timeout int
}
func TestApSL(t *testing.T) {
// Create a lens for the Age field
ageLens := L.MakeLens(
func(p Person) int { return p.Age },
func(p Person, a int) Person { p.Age = a; return p },
)
t.Run("ApSL with Right value", func(t *testing.T) {
result := F.Pipe1(
Right[error](Person{Name: "Alice", Age: 25}),
ApSL(ageLens, Right[error](30)),
)
expected := Right[error](Person{Name: "Alice", Age: 30})
assert.Equal(t, expected, result)
})
t.Run("ApSL with Left in context", func(t *testing.T) {
result := F.Pipe1(
Left[Person](assert.AnError),
ApSL(ageLens, Right[error](30)),
)
expected := Left[Person](assert.AnError)
assert.Equal(t, expected, result)
})
t.Run("ApSL with Left in value", func(t *testing.T) {
result := F.Pipe1(
Right[error](Person{Name: "Alice", Age: 25}),
ApSL(ageLens, Left[int](assert.AnError)),
)
expected := Left[Person](assert.AnError)
assert.Equal(t, expected, result)
})
t.Run("ApSL with both Left", func(t *testing.T) {
result := F.Pipe1(
Left[Person](assert.AnError),
ApSL(ageLens, Left[int](assert.AnError)),
)
expected := Left[Person](assert.AnError)
assert.Equal(t, expected, result)
})
}
func TestBindL(t *testing.T) {
// Create a lens for the Value field
valueLens := L.MakeLens(
func(c Counter) int { return c.Value },
func(c Counter, v int) Counter { c.Value = v; return c },
)
t.Run("BindL with successful transformation", func(t *testing.T) {
// Increment the counter, but fail if it would exceed 100
increment := func(v int) Either[error, int] {
if v >= 100 {
return Left[int](assert.AnError)
}
return Right[error](v + 1)
}
result := F.Pipe1(
Right[error](Counter{Value: 42}),
BindL(valueLens, increment),
)
expected := Right[error](Counter{Value: 43})
assert.Equal(t, expected, result)
})
t.Run("BindL with failing transformation", func(t *testing.T) {
increment := func(v int) Either[error, int] {
if v >= 100 {
return Left[int](assert.AnError)
}
return Right[error](v + 1)
}
result := F.Pipe1(
Right[error](Counter{Value: 100}),
BindL(valueLens, increment),
)
expected := Left[Counter](assert.AnError)
assert.Equal(t, expected, result)
})
t.Run("BindL with Left input", func(t *testing.T) {
increment := func(v int) Either[error, int] {
return Right[error](v + 1)
}
result := F.Pipe1(
Left[Counter](assert.AnError),
BindL(valueLens, increment),
)
expected := Left[Counter](assert.AnError)
assert.Equal(t, expected, result)
})
t.Run("BindL with multiple operations", func(t *testing.T) {
double := func(v int) Either[error, int] {
return Right[error](v * 2)
}
addTen := func(v int) Either[error, int] {
return Right[error](v + 10)
}
result := F.Pipe2(
Right[error](Counter{Value: 5}),
BindL(valueLens, double),
BindL(valueLens, addTen),
)
expected := Right[error](Counter{Value: 20})
assert.Equal(t, expected, result)
})
}
func TestLetL(t *testing.T) {
// Create a lens for the Value field
valueLens := L.MakeLens(
func(c Counter) int { return c.Value },
func(c Counter, v int) Counter { c.Value = v; return c },
)
t.Run("LetL with pure transformation", func(t *testing.T) {
double := func(v int) int { return v * 2 }
result := F.Pipe1(
Right[error](Counter{Value: 21}),
LetL[error](valueLens, double),
)
expected := Right[error](Counter{Value: 42})
assert.Equal(t, expected, result)
})
t.Run("LetL with Left input", func(t *testing.T) {
double := func(v int) int { return v * 2 }
result := F.Pipe1(
Left[Counter](assert.AnError),
LetL[error](valueLens, double),
)
expected := Left[Counter](assert.AnError)
assert.Equal(t, expected, result)
})
t.Run("LetL with multiple transformations", func(t *testing.T) {
double := func(v int) int { return v * 2 }
addTen := func(v int) int { return v + 10 }
result := F.Pipe2(
Right[error](Counter{Value: 5}),
LetL[error](valueLens, double),
LetL[error](valueLens, addTen),
)
expected := Right[error](Counter{Value: 20})
assert.Equal(t, expected, result)
})
t.Run("LetL with identity transformation", func(t *testing.T) {
identity := func(v int) int { return v }
result := F.Pipe1(
Right[error](Counter{Value: 42}),
LetL[error](valueLens, identity),
)
expected := Right[error](Counter{Value: 42})
assert.Equal(t, expected, result)
})
}
func TestLetToL(t *testing.T) {
// Create a lens for the Debug field
debugLens := L.MakeLens(
func(c Config) bool { return c.Debug },
func(c Config, d bool) Config { c.Debug = d; return c },
)
t.Run("LetToL with constant value", func(t *testing.T) {
result := F.Pipe1(
Right[error](Config{Debug: true, Timeout: 30}),
LetToL[error](debugLens, false),
)
expected := Right[error](Config{Debug: false, Timeout: 30})
assert.Equal(t, expected, result)
})
t.Run("LetToL with Left input", func(t *testing.T) {
result := F.Pipe1(
Left[Config](assert.AnError),
LetToL[error](debugLens, false),
)
expected := Left[Config](assert.AnError)
assert.Equal(t, expected, result)
})
t.Run("LetToL with multiple fields", func(t *testing.T) {
timeoutLens := L.MakeLens(
func(c Config) int { return c.Timeout },
func(c Config, t int) Config { c.Timeout = t; return c },
)
result := F.Pipe2(
Right[error](Config{Debug: true, Timeout: 30}),
LetToL[error](debugLens, false),
LetToL[error](timeoutLens, 60),
)
expected := Right[error](Config{Debug: false, Timeout: 60})
assert.Equal(t, expected, result)
})
t.Run("LetToL setting same value", func(t *testing.T) {
result := F.Pipe1(
Right[error](Config{Debug: false, Timeout: 30}),
LetToL[error](debugLens, false),
)
expected := Right[error](Config{Debug: false, Timeout: 30})
assert.Equal(t, expected, result)
})
}
func TestLensOperationsCombined(t *testing.T) {
// Test combining different lens operations
valueLens := L.MakeLens(
func(c Counter) int { return c.Value },
func(c Counter, v int) Counter { c.Value = v; return c },
)
t.Run("Combine LetToL and LetL", func(t *testing.T) {
double := func(v int) int { return v * 2 }
result := F.Pipe2(
Right[error](Counter{Value: 100}),
LetToL[error](valueLens, 10),
LetL[error](valueLens, double),
)
expected := Right[error](Counter{Value: 20})
assert.Equal(t, expected, result)
})
t.Run("Combine LetL and BindL", func(t *testing.T) {
double := func(v int) int { return v * 2 }
validate := func(v int) Either[error, int] {
if v > 100 {
return Left[int](assert.AnError)
}
return Right[error](v)
}
result := F.Pipe2(
Right[error](Counter{Value: 25}),
LetL[error](valueLens, double),
BindL(valueLens, validate),
)
expected := Right[error](Counter{Value: 50})
assert.Equal(t, expected, result)
})
t.Run("Combine ApSL and LetL", func(t *testing.T) {
addFive := func(v int) int { return v + 5 }
result := F.Pipe2(
Right[error](Counter{Value: 10}),
ApSL(valueLens, Right[error](20)),
LetL[error](valueLens, addFive),
)
expected := Right[error](Counter{Value: 25})
assert.Equal(t, expected, result)
})
}

View File

@@ -69,7 +69,7 @@ func MonadAp[B, E, A any](fab Either[E, func(a A) B], fa Either[E, A]) Either[E,
// Ap is the curried version of [MonadAp]. // Ap is the curried version of [MonadAp].
// Returns a function that applies a wrapped function to the given wrapped value. // Returns a function that applies a wrapped function to the given wrapped value.
func Ap[B, E, A any](fa Either[E, A]) func(fab Either[E, func(a A) B]) Either[E, B] { func Ap[B, E, A any](fa Either[E, A]) Operator[E, func(A) B, B] {
return F.Bind2nd(MonadAp[B, E, A], fa) return F.Bind2nd(MonadAp[B, E, A], fa)
} }
@@ -120,7 +120,7 @@ func MonadMapTo[E, A, B any](fa Either[E, A], b B) Either[E, B] {
} }
// MapTo is the curried version of [MonadMapTo]. // MapTo is the curried version of [MonadMapTo].
func MapTo[E, A, B any](b B) func(Either[E, A]) Either[E, B] { func MapTo[E, A, B any](b B) Operator[E, A, B] {
return Map[E](F.Constant1[A](b)) return Map[E](F.Constant1[A](b))
} }
@@ -211,26 +211,26 @@ func MonadChainOptionK[A, B, E any](onNone func() E, ma Either[E, A], f func(A)
} }
// ChainOptionK is the curried version of [MonadChainOptionK]. // ChainOptionK is the curried version of [MonadChainOptionK].
func ChainOptionK[A, B, E any](onNone func() E) func(func(A) Option[B]) func(Either[E, A]) Either[E, B] { func ChainOptionK[A, B, E any](onNone func() E) func(func(A) Option[B]) Operator[E, A, B] {
from := FromOption[B](onNone) from := FromOption[B](onNone)
return func(f func(A) Option[B]) func(Either[E, A]) Either[E, B] { return func(f func(A) Option[B]) Operator[E, A, B] {
return Chain(F.Flow2(f, from)) return Chain(F.Flow2(f, from))
} }
} }
// ChainTo is the curried version of [MonadChainTo]. // ChainTo is the curried version of [MonadChainTo].
func ChainTo[A, E, B any](mb Either[E, B]) func(Either[E, A]) Either[E, B] { func ChainTo[A, E, B any](mb Either[E, B]) Operator[E, A, B] {
return F.Constant1[Either[E, A]](mb) return F.Constant1[Either[E, A]](mb)
} }
// Chain is the curried version of [MonadChain]. // Chain is the curried version of [MonadChain].
// Sequences two computations where the second depends on the first. // Sequences two computations where the second depends on the first.
func Chain[E, A, B any](f func(a A) Either[E, B]) func(Either[E, A]) Either[E, B] { func Chain[E, A, B any](f func(a A) Either[E, B]) Operator[E, A, B] {
return Fold(Left[B, E], f) return Fold(Left[B, E], f)
} }
// ChainFirst is the curried version of [MonadChainFirst]. // ChainFirst is the curried version of [MonadChainFirst].
func ChainFirst[E, A, B any](f func(a A) Either[E, B]) func(Either[E, A]) Either[E, A] { func ChainFirst[E, A, B any](f func(a A) Either[E, B]) Operator[E, A, A] {
return C.ChainFirst( return C.ChainFirst(
Chain[E, A, A], Chain[E, A, A],
Map[E, B, A], Map[E, B, A],
@@ -437,7 +437,7 @@ func AltW[E, E1, A any](that L.Lazy[Either[E1, A]]) func(Either[E, A]) Either[E1
// return either.Right[error](99) // return either.Right[error](99)
// }) // })
// result := alternative(either.Left[int](errors.New("fail"))) // Right(99) // result := alternative(either.Left[int](errors.New("fail"))) // Right(99)
func Alt[E, A any](that L.Lazy[Either[E, A]]) func(Either[E, A]) Either[E, A] { func Alt[E, A any](that L.Lazy[Either[E, A]]) Operator[E, A, A] {
return AltW[E](that) return AltW[E](that)
} }
@@ -449,7 +449,7 @@ func Alt[E, A any](that L.Lazy[Either[E, A]]) func(Either[E, A]) Either[E, A] {
// return either.Right[error](0) // default value // return either.Right[error](0) // default value
// }) // })
// result := recover(either.Left[int](errors.New("fail"))) // Right(0) // result := recover(either.Left[int](errors.New("fail"))) // Right(0)
func OrElse[E, A any](onLeft func(e E) Either[E, A]) func(Either[E, A]) Either[E, A] { func OrElse[E, A any](onLeft func(e E) Either[E, A]) Operator[E, A, A] {
return Fold(onLeft, Of[E, A]) return Fold(onLeft, Of[E, A])
} }
@@ -518,7 +518,7 @@ func MonadFlap[E, B, A any](fab Either[E, func(A) B], a A) Either[E, B] {
} }
// Flap is the curried version of [MonadFlap]. // Flap is the curried version of [MonadFlap].
func Flap[E, B, A any](a A) func(Either[E, func(A) B]) Either[E, B] { func Flap[E, B, A any](a A) Operator[E, func(A) B, B] {
return FC.Flap(Map[E, func(A) B, B], a) return FC.Flap(Map[E, func(A) B, B], a)
} }

View File

@@ -21,7 +21,7 @@ import (
type eitherFunctor[E, A, B any] struct{} type eitherFunctor[E, A, B any] struct{}
func (o *eitherFunctor[E, A, B]) Map(f func(A) B) func(Either[E, A]) Either[E, B] { func (o *eitherFunctor[E, A, B]) Map(f func(A) B) Operator[E, A, B] {
return Map[E, A, B](f) return Map[E, A, B](f)
} }

View File

@@ -22,7 +22,7 @@ import (
L "github.com/IBM/fp-go/v2/logging" L "github.com/IBM/fp-go/v2/logging"
) )
func _log[E, A any](left func(string, ...any), right func(string, ...any), prefix string) func(Either[E, A]) Either[E, A] { func _log[E, A any](left func(string, ...any), right func(string, ...any), prefix string) Operator[E, A, A] {
return Fold( return Fold(
func(e E) Either[E, A] { func(e E) Either[E, A] {
left("%s: %v", prefix, e) left("%s: %v", prefix, e)
@@ -50,9 +50,9 @@ func _log[E, A any](left func(string, ...any), right func(string, ...any), prefi
// ) // )
// // Logs: "Processing: 42" // // Logs: "Processing: 42"
// // result is Right(84) // // result is Right(84)
func Logger[E, A any](loggers ...*log.Logger) func(string) func(Either[E, A]) Either[E, A] { func Logger[E, A any](loggers ...*log.Logger) func(string) Operator[E, A, A] {
left, right := L.LoggingCallbacks(loggers...) left, right := L.LoggingCallbacks(loggers...)
return func(prefix string) func(Either[E, A]) Either[E, A] { return func(prefix string) Operator[E, A, A] {
delegate := _log[E, A](left, right, prefix) delegate := _log[E, A](left, right, prefix)
return func(ma Either[E, A]) Either[E, A] { return func(ma Either[E, A]) Either[E, A] {
return F.Pipe1( return F.Pipe1(

View File

@@ -25,15 +25,15 @@ func (o *eitherMonad[E, A, B]) Of(a A) Either[E, A] {
return Of[E, A](a) return Of[E, A](a)
} }
func (o *eitherMonad[E, A, B]) Map(f func(A) B) func(Either[E, A]) Either[E, B] { func (o *eitherMonad[E, A, B]) Map(f func(A) B) Operator[E, A, B] {
return Map[E, A, B](f) return Map[E, A, B](f)
} }
func (o *eitherMonad[E, A, B]) Chain(f func(A) Either[E, B]) func(Either[E, A]) Either[E, B] { func (o *eitherMonad[E, A, B]) Chain(f func(A) Either[E, B]) Operator[E, A, B] {
return Chain[E, A, B](f) return Chain[E, A, B](f)
} }
func (o *eitherMonad[E, A, B]) Ap(fa Either[E, A]) func(Either[E, func(A) B]) Either[E, B] { func (o *eitherMonad[E, A, B]) Ap(fa Either[E, A]) Operator[E, func(A) B, B] {
return Ap[B, E, A](fa) return Ap[B, E, A](fa)
} }

View File

@@ -31,7 +31,7 @@ import (
// m := either.AlternativeMonoid[error](intAdd) // m := either.AlternativeMonoid[error](intAdd)
// result := m.Concat(either.Right[error](1), either.Right[error](2)) // result := m.Concat(either.Right[error](1), either.Right[error](2))
// // result is Right(3) // // result is Right(3)
func AlternativeMonoid[E, A any](m M.Monoid[A]) M.Monoid[Either[E, A]] { func AlternativeMonoid[E, A any](m M.Monoid[A]) Monoid[E, A] {
return M.AlternativeMonoid( return M.AlternativeMonoid(
Of[E, A], Of[E, A],
MonadMap[E, A, func(A) A], MonadMap[E, A, func(A) A],
@@ -51,7 +51,7 @@ func AlternativeMonoid[E, A any](m M.Monoid[A]) M.Monoid[Either[E, A]] {
// m := either.AltMonoid[error, int](zero) // m := either.AltMonoid[error, int](zero)
// result := m.Concat(either.Left[int](errors.New("err1")), either.Right[error](42)) // result := m.Concat(either.Left[int](errors.New("err1")), either.Right[error](42))
// // result is Right(42) // // result is Right(42)
func AltMonoid[E, A any](zero L.Lazy[Either[E, A]]) M.Monoid[Either[E, A]] { func AltMonoid[E, A any](zero L.Lazy[Either[E, A]]) Monoid[E, A] {
return M.AltMonoid( return M.AltMonoid(
zero, zero,
MonadAlt[E, A], MonadAlt[E, A],

View File

@@ -15,10 +15,22 @@
package either package either
import "github.com/IBM/fp-go/v2/option" import (
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/monoid"
"github.com/IBM/fp-go/v2/optics/lens"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/reader"
)
// Option is a type alias for option.Option, provided for convenience // Option is a type alias for option.Option, provided for convenience
// when working with Either and Option together. // when working with Either and Option together.
type ( type (
Option[A any] = option.Option[A] Option[A any] = option.Option[A]
Lens[S, T any] = lens.Lens[S, T]
Endomorphism[T any] = endomorphism.Endomorphism[T]
Kleisli[E, A, B any] = reader.Reader[A, Either[E, B]]
Operator[E, A, B any] = Kleisli[E, Either[E, A], B]
Monoid[E, A any] = monoid.Monoid[Either[E, A]]
) )

View File

@@ -21,8 +21,8 @@ import (
A "github.com/IBM/fp-go/v2/array" A "github.com/IBM/fp-go/v2/array"
ENDO "github.com/IBM/fp-go/v2/endomorphism" ENDO "github.com/IBM/fp-go/v2/endomorphism"
F "github.com/IBM/fp-go/v2/function" F "github.com/IBM/fp-go/v2/function"
L "github.com/IBM/fp-go/v2/optics/lens"
LA "github.com/IBM/fp-go/v2/optics/lens/array" LA "github.com/IBM/fp-go/v2/optics/lens/array"
LO "github.com/IBM/fp-go/v2/optics/lens/option"
LRG "github.com/IBM/fp-go/v2/optics/lens/record/generic" LRG "github.com/IBM/fp-go/v2/optics/lens/record/generic"
O "github.com/IBM/fp-go/v2/option" O "github.com/IBM/fp-go/v2/option"
RG "github.com/IBM/fp-go/v2/record/generic" RG "github.com/IBM/fp-go/v2/record/generic"
@@ -50,7 +50,7 @@ var (
composeHead = F.Pipe1( composeHead = F.Pipe1(
LA.AtHead[string](), LA.AtHead[string](),
L.ComposeOptions[url.Values, string](A.Empty[string]()), LO.Compose[url.Values, string](A.Empty[string]()),
) )
// AtValue is a [L.Lens] that focusses on first value in form fields // AtValue is a [L.Lens] that focusses on first value in form fields

View File

@@ -71,8 +71,8 @@ import (
A "github.com/IBM/fp-go/v2/array" A "github.com/IBM/fp-go/v2/array"
F "github.com/IBM/fp-go/v2/function" F "github.com/IBM/fp-go/v2/function"
L "github.com/IBM/fp-go/v2/optics/lens"
LA "github.com/IBM/fp-go/v2/optics/lens/array" LA "github.com/IBM/fp-go/v2/optics/lens/array"
LO "github.com/IBM/fp-go/v2/optics/lens/option"
LRG "github.com/IBM/fp-go/v2/optics/lens/record/generic" LRG "github.com/IBM/fp-go/v2/optics/lens/record/generic"
RG "github.com/IBM/fp-go/v2/record/generic" RG "github.com/IBM/fp-go/v2/record/generic"
) )
@@ -136,7 +136,7 @@ var (
// element of a string array, returning an Option[string]. // element of a string array, returning an Option[string].
composeHead = F.Pipe1( composeHead = F.Pipe1(
LA.AtHead[string](), LA.AtHead[string](),
L.ComposeOptions[http.Header, string](A.Empty[string]()), LO.Compose[http.Header, string](A.Empty[string]()),
) )
// AtValue is a Lens that focuses on the first value of a specific header. // AtValue is a Lens that focuses on the first value of a specific header.

View File

@@ -49,19 +49,19 @@ func Of[A any](a A) A {
return a return a
} }
func MonadChain[A, B any](ma A, f func(A) B) B { func MonadChain[A, B any](ma A, f Kleisli[A, B]) B {
return f(ma) return f(ma)
} }
func Chain[A, B any](f func(A) B) Operator[A, B] { func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
return f return f
} }
func MonadChainFirst[A, B any](fa A, f func(A) B) A { func MonadChainFirst[A, B any](fa A, f Kleisli[A, B]) A {
return chain.MonadChainFirst(MonadChain[A, A], MonadMap[B, A], fa, f) return chain.MonadChainFirst(MonadChain[A, A], MonadMap[B, A], fa, f)
} }
func ChainFirst[A, B any](f func(A) B) Operator[A, A] { func ChainFirst[A, B any](f Kleisli[A, B]) Operator[A, A] {
return chain.ChainFirst(Chain[A, A], Map[B, A], f) return chain.ChainFirst(Chain[A, A], Map[B, A], f)
} }

View File

@@ -16,5 +16,6 @@
package identity package identity
type ( type (
Operator[A, B any] = func(A) B Kleisli[A, B any] = func(A) B
Operator[A, B any] = Kleisli[A, B]
) )

View File

@@ -19,6 +19,7 @@ import (
INTA "github.com/IBM/fp-go/v2/internal/apply" INTA "github.com/IBM/fp-go/v2/internal/apply"
INTC "github.com/IBM/fp-go/v2/internal/chain" INTC "github.com/IBM/fp-go/v2/internal/chain"
INTF "github.com/IBM/fp-go/v2/internal/functor" INTF "github.com/IBM/fp-go/v2/internal/functor"
L "github.com/IBM/fp-go/v2/optics/lens"
) )
// Do creates an empty context of type S to be used with the Bind operation. // Do creates an empty context of type S to be used with the Bind operation.
@@ -58,7 +59,7 @@ func Do[S any](
// }, fetchUser) // }, fetchUser)
func Bind[S1, S2, T any]( func Bind[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
f func(S1) IO[T], f Kleisli[S1, T],
) Operator[S1, S2] { ) Operator[S1, S2] {
return INTC.Bind( return INTC.Bind(
Chain[S1, S2], Chain[S1, S2],
@@ -152,3 +153,136 @@ func ApS[S1, S2, T any](
fa, fa,
) )
} }
// ApSL attaches a value to a context using a lens-based setter.
// This is a convenience function that combines ApS with a lens, allowing you to use
// optics to update nested structures in a more composable way.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// This eliminates the need to manually write setter functions.
//
// Example:
//
// type Config struct {
// Host string
// Port int
// }
//
// portLens := lens.MakeLens(
// func(c Config) int { return c.Port },
// func(c Config, p int) Config { c.Port = p; return c },
// )
//
// result := F.Pipe2(
// io.Of(Config{Host: "localhost"}),
// io.ApSL(portLens, io.Of(8080)),
// )
func ApSL[S, T any](
lens L.Lens[S, T],
fa IO[T],
) Operator[S, S] {
return ApS(lens.Set, fa)
}
// BindL attaches the result of a computation to a context using a lens-based setter.
// This is a convenience function that combines Bind with a lens, allowing you to use
// optics to update nested structures based on their current values.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The computation function f receives the current value of the focused field and returns
// an IO that produces the new value.
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Increment the counter asynchronously
// increment := func(v int) io.IO[int] {
// return io.Of(v + 1)
// }
//
// result := F.Pipe1(
// io.Of(Counter{Value: 42}),
// io.BindL(valueLens, increment),
// ) // IO[Counter{Value: 43}]
func BindL[S, T any](
lens L.Lens[S, T],
f Kleisli[T, T],
) Operator[S, S] {
return Bind[S, S, T](lens.Set, func(s S) IO[T] {
return f(lens.Get(s))
})
}
// LetL attaches the result of a pure computation to a context using a lens-based setter.
// This is a convenience function that combines Let with a lens, allowing you to use
// optics to update nested structures with pure transformations.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The transformation function f receives the current value of the focused field and returns
// the new value directly (not wrapped in IO).
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Double the counter value
// double := func(v int) int { return v * 2 }
//
// result := F.Pipe1(
// io.Of(Counter{Value: 21}),
// io.LetL(valueLens, double),
// ) // IO[Counter{Value: 42}]
func LetL[S, T any](
lens L.Lens[S, T],
f func(T) T,
) Operator[S, S] {
return Let[S, S, T](lens.Set, func(s S) T {
return f(lens.Get(s))
})
}
// LetToL attaches a constant value to a context using a lens-based setter.
// This is a convenience function that combines LetTo with a lens, allowing you to use
// optics to set nested fields to specific values.
//
// The lens parameter provides the setter for a field within the structure S.
// Unlike LetL which transforms the current value, LetToL simply replaces it with
// the provided constant value b.
//
// Example:
//
// type Config struct {
// Debug bool
// Timeout int
// }
//
// debugLens := lens.MakeLens(
// func(c Config) bool { return c.Debug },
// func(c Config, d bool) Config { c.Debug = d; return c },
// )
//
// result := F.Pipe1(
// io.Of(Config{Debug: true, Timeout: 30}),
// io.LetToL(debugLens, false),
// ) // IO[Config{Debug: false, Timeout: 30}]
func LetToL[S, T any](
lens L.Lens[S, T],
b T,
) Operator[S, S] {
return LetTo[S, S, T](lens.Set, b)
}

View File

@@ -20,6 +20,7 @@ import (
F "github.com/IBM/fp-go/v2/function" F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/utils" "github.com/IBM/fp-go/v2/internal/utils"
L "github.com/IBM/fp-go/v2/optics/lens"
"github.com/stretchr/testify/assert" "github.com/stretchr/testify/assert"
) )
@@ -54,3 +55,144 @@ func TestApS(t *testing.T) {
assert.Equal(t, res(), "John Doe") assert.Equal(t, res(), "John Doe")
} }
// Test types for lens-based operations
type Counter struct {
Value int
}
type Person struct {
Name string
Age int
}
func TestBindL(t *testing.T) {
valueLens := L.MakeLens(
func(c Counter) int { return c.Value },
func(c Counter, v int) Counter { c.Value = v; return c },
)
t.Run("BindL with successful transformation", func(t *testing.T) {
increment := func(v int) IO[int] {
return Of(v + 1)
}
result := F.Pipe1(
Of(Counter{Value: 42}),
BindL(valueLens, increment),
)
assert.Equal(t, Counter{Value: 43}, result())
})
t.Run("BindL with multiple operations", func(t *testing.T) {
double := func(v int) IO[int] {
return Of(v * 2)
}
addTen := func(v int) IO[int] {
return Of(v + 10)
}
result := F.Pipe2(
Of(Counter{Value: 5}),
BindL(valueLens, double),
BindL(valueLens, addTen),
)
assert.Equal(t, Counter{Value: 20}, result())
})
}
func TestLetL(t *testing.T) {
valueLens := L.MakeLens(
func(c Counter) int { return c.Value },
func(c Counter, v int) Counter { c.Value = v; return c },
)
t.Run("LetL with pure transformation", func(t *testing.T) {
double := func(v int) int { return v * 2 }
result := F.Pipe1(
Of(Counter{Value: 21}),
LetL(valueLens, double),
)
assert.Equal(t, Counter{Value: 42}, result())
})
t.Run("LetL with multiple transformations", func(t *testing.T) {
double := func(v int) int { return v * 2 }
addTen := func(v int) int { return v + 10 }
result := F.Pipe2(
Of(Counter{Value: 5}),
LetL(valueLens, double),
LetL(valueLens, addTen),
)
assert.Equal(t, Counter{Value: 20}, result())
})
}
func TestLetToL(t *testing.T) {
ageLens := L.MakeLens(
func(p Person) int { return p.Age },
func(p Person, a int) Person { p.Age = a; return p },
)
t.Run("LetToL with constant value", func(t *testing.T) {
result := F.Pipe1(
Of(Person{Name: "Alice", Age: 25}),
LetToL(ageLens, 30),
)
assert.Equal(t, Person{Name: "Alice", Age: 30}, result())
})
t.Run("LetToL with multiple fields", func(t *testing.T) {
nameLens := L.MakeLens(
func(p Person) string { return p.Name },
func(p Person, n string) Person { p.Name = n; return p },
)
result := F.Pipe2(
Of(Person{Name: "Alice", Age: 25}),
LetToL(ageLens, 30),
LetToL(nameLens, "Bob"),
)
assert.Equal(t, Person{Name: "Bob", Age: 30}, result())
})
}
func TestApSL(t *testing.T) {
ageLens := L.MakeLens(
func(p Person) int { return p.Age },
func(p Person, a int) Person { p.Age = a; return p },
)
t.Run("ApSL with value", func(t *testing.T) {
result := F.Pipe1(
Of(Person{Name: "Alice", Age: 25}),
ApSL(ageLens, Of(30)),
)
assert.Equal(t, Person{Name: "Alice", Age: 30}, result())
})
t.Run("ApSL with chaining", func(t *testing.T) {
nameLens := L.MakeLens(
func(p Person) string { return p.Name },
func(p Person, n string) Person { p.Name = n; return p },
)
result := F.Pipe2(
Of(Person{Name: "Alice", Age: 25}),
ApSL(ageLens, Of(30)),
ApSL(nameLens, Of("Bob")),
)
assert.Equal(t, Person{Name: "Bob", Age: 30}, result())
})
}

View File

@@ -23,7 +23,7 @@ import (
// whether the body action returns and error or not. // whether the body action returns and error or not.
func Bracket[A, B, ANY any]( func Bracket[A, B, ANY any](
acquire IO[A], acquire IO[A],
use func(A) IO[B], use Kleisli[A, B],
release func(A, B) IO[ANY], release func(A, B) IO[ANY],
) IO[B] { ) IO[B] {
return INTB.Bracket[IO[A], IO[B], IO[ANY], B, A, B]( return INTB.Bracket[IO[A], IO[B], IO[ANY], B, A, B](

File diff suppressed because it is too large Load Diff

View File

@@ -44,7 +44,8 @@ type (
// refer to [https://andywhite.xyz/posts/2021-01-27-rte-foundations/#ioltagt] for more details // refer to [https://andywhite.xyz/posts/2021-01-27-rte-foundations/#ioltagt] for more details
IO[A any] = func() A IO[A any] = func() A
Operator[A, B any] = R.Reader[IO[A], IO[B]] Kleisli[A, B any] = R.Reader[A, IO[B]]
Operator[A, B any] = Kleisli[IO[A], B]
Monoid[A any] = M.Monoid[IO[A]] Monoid[A any] = M.Monoid[IO[A]]
Semigroup[A any] = S.Semigroup[IO[A]] Semigroup[A any] = S.Semigroup[IO[A]]
) )
@@ -121,14 +122,14 @@ func MapTo[A, B any](b B) Operator[A, B] {
} }
// MonadChain composes computations in sequence, using the return value of one computation to determine the next computation. // MonadChain composes computations in sequence, using the return value of one computation to determine the next computation.
func MonadChain[A, B any](fa IO[A], f func(A) IO[B]) IO[B] { func MonadChain[A, B any](fa IO[A], f Kleisli[A, B]) IO[B] {
return func() B { return func() B {
return f(fa())() return f(fa())()
} }
} }
// Chain composes computations in sequence, using the return value of one computation to determine the next computation. // Chain composes computations in sequence, using the return value of one computation to determine the next computation.
func Chain[A, B any](f func(A) IO[B]) Operator[A, B] { func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
return F.Bind2nd(MonadChain[A, B], f) return F.Bind2nd(MonadChain[A, B], f)
} }
@@ -201,13 +202,13 @@ func Memoize[A any](ma IO[A]) IO[A] {
// MonadChainFirst composes computations in sequence, using the return value of one computation to determine the next computation and // MonadChainFirst composes computations in sequence, using the return value of one computation to determine the next computation and
// keeping only the result of the first. // keeping only the result of the first.
func MonadChainFirst[A, B any](fa IO[A], f func(A) IO[B]) IO[A] { func MonadChainFirst[A, B any](fa IO[A], f Kleisli[A, B]) IO[A] {
return chain.MonadChainFirst(MonadChain[A, A], MonadMap[B, A], fa, f) return chain.MonadChainFirst(MonadChain[A, A], MonadMap[B, A], fa, f)
} }
// ChainFirst composes computations in sequence, using the return value of one computation to determine the next computation and // ChainFirst composes computations in sequence, using the return value of one computation to determine the next computation and
// keeping only the result of the first. // keeping only the result of the first.
func ChainFirst[A, B any](f func(A) IO[B]) Operator[A, A] { func ChainFirst[A, B any](f Kleisli[A, B]) Operator[A, A] {
return chain.ChainFirst( return chain.ChainFirst(
Chain[A, A], Chain[A, A],
Map[B, A], Map[B, A],

View File

@@ -32,9 +32,9 @@ import (
// io.ChainFirst(io.Logger[User]()("Fetched user")), // io.ChainFirst(io.Logger[User]()("Fetched user")),
// processUser, // processUser,
// ) // )
func Logger[A any](loggers ...*log.Logger) func(string) func(A) IO[any] { func Logger[A any](loggers ...*log.Logger) func(string) Kleisli[A, any] {
_, right := L.LoggingCallbacks(loggers...) _, right := L.LoggingCallbacks(loggers...)
return func(prefix string) func(A) IO[any] { return func(prefix string) Kleisli[A, any] {
return func(a A) IO[any] { return func(a A) IO[any] {
return FromImpure(func() { return FromImpure(func() {
right("%s: %v", prefix, a) right("%s: %v", prefix, a)
@@ -53,7 +53,7 @@ func Logger[A any](loggers ...*log.Logger) func(string) func(A) IO[any] {
// io.ChainFirst(io.Logf[User]("User: %+v")), // io.ChainFirst(io.Logf[User]("User: %+v")),
// processUser, // processUser,
// ) // )
func Logf[A any](prefix string) func(A) IO[any] { func Logf[A any](prefix string) Kleisli[A, any] {
return func(a A) IO[any] { return func(a A) IO[any] {
return FromImpure(func() { return FromImpure(func() {
log.Printf(prefix, a) log.Printf(prefix, a)
@@ -72,7 +72,7 @@ func Logf[A any](prefix string) func(A) IO[any] {
// io.ChainFirst(io.Printf[User]("User: %+v\n")), // io.ChainFirst(io.Printf[User]("User: %+v\n")),
// processUser, // processUser,
// ) // )
func Printf[A any](prefix string) func(A) IO[any] { func Printf[A any](prefix string) Kleisli[A, any] {
return func(a A) IO[any] { return func(a A) IO[any] {
return FromImpure(func() { return FromImpure(func() {
fmt.Printf(prefix, a) fmt.Printf(prefix, a)

View File

@@ -35,7 +35,7 @@ func (o *ioMonad[A, B]) Map(f func(A) B) Operator[A, B] {
return Map(f) return Map(f)
} }
func (o *ioMonad[A, B]) Chain(f func(A) IO[B]) Operator[A, B] { func (o *ioMonad[A, B]) Chain(f Kleisli[A, B]) Operator[A, B] {
return Chain(f) return Chain(f)
} }

View File

@@ -36,7 +36,7 @@ import (
// return readData(f) // return readData(f)
// }) // })
func WithResource[ func WithResource[
R, A, ANY any](onCreate IO[R], onRelease func(R) IO[ANY]) func(func(R) IO[A]) IO[A] { R, A, ANY any](onCreate IO[R], onRelease func(R) IO[ANY]) Kleisli[Kleisli[R, A], A] {
// simply map to implementation of bracket // simply map to implementation of bracket
return function.Bind13of3(Bracket[R, A, ANY])(onCreate, function.Ignore2of2[A](onRelease)) return function.Bind13of3(Bracket[R, A, ANY])(onCreate, function.Ignore2of2[A](onRelease))
} }

View File

@@ -47,7 +47,7 @@ type (
// ) // )
func Retrying[A any]( func Retrying[A any](
policy R.RetryPolicy, policy R.RetryPolicy,
action func(R.RetryStatus) IO[A], action Kleisli[R.RetryStatus, A],
check func(A) bool, check func(A) bool,
) IO[A] { ) IO[A] {
// get an implementation for the types // get an implementation for the types

View File

@@ -29,7 +29,7 @@ import (
// fetchUsers := func(id int) io.IO[User] { return fetchUser(id) } // fetchUsers := func(id int) io.IO[User] { return fetchUser(id) }
// users := io.MonadTraverseArray([]int{1, 2, 3}, fetchUsers) // users := io.MonadTraverseArray([]int{1, 2, 3}, fetchUsers)
// result := users() // []User with all fetched users // result := users() // []User with all fetched users
func MonadTraverseArray[A, B any](tas []A, f func(A) IO[B]) IO[[]B] { func MonadTraverseArray[A, B any](tas []A, f Kleisli[A, B]) IO[[]B] {
return INTA.MonadTraverse( return INTA.MonadTraverse(
Of[[]B], Of[[]B],
Map[[]B, func(B) []B], Map[[]B, func(B) []B],
@@ -50,7 +50,7 @@ func MonadTraverseArray[A, B any](tas []A, f func(A) IO[B]) IO[[]B] {
// return fetchUser(id) // return fetchUser(id)
// }) // })
// users := fetchUsers([]int{1, 2, 3}) // users := fetchUsers([]int{1, 2, 3})
func TraverseArray[A, B any](f func(A) IO[B]) func([]A) IO[[]B] { func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return INTA.Traverse[[]A]( return INTA.Traverse[[]A](
Of[[]B], Of[[]B],
Map[[]B, func(B) []B], Map[[]B, func(B) []B],
@@ -68,7 +68,7 @@ func TraverseArray[A, B any](f func(A) IO[B]) func([]A) IO[[]B] {
// numbered := io.TraverseArrayWithIndex(func(i int, s string) io.IO[string] { // numbered := io.TraverseArrayWithIndex(func(i int, s string) io.IO[string] {
// return io.Of(fmt.Sprintf("%d: %s", i, s)) // return io.Of(fmt.Sprintf("%d: %s", i, s))
// }) // })
func TraverseArrayWithIndex[A, B any](f func(int, A) IO[B]) func([]A) IO[[]B] { func TraverseArrayWithIndex[A, B any](f func(int, A) IO[B]) Kleisli[[]A, []B] {
return INTA.TraverseWithIndex[[]A]( return INTA.TraverseWithIndex[[]A](
Of[[]B], Of[[]B],
Map[[]B, func(B) []B], Map[[]B, func(B) []B],
@@ -98,7 +98,7 @@ func SequenceArray[A any](tas []IO[A]) IO[[]A] {
// fetchData := func(url string) io.IO[Data] { return fetch(url) } // fetchData := func(url string) io.IO[Data] { return fetch(url) }
// urls := map[string]string{"a": "http://a.com", "b": "http://b.com"} // urls := map[string]string{"a": "http://a.com", "b": "http://b.com"}
// data := io.MonadTraverseRecord(urls, fetchData) // data := io.MonadTraverseRecord(urls, fetchData)
func MonadTraverseRecord[K comparable, A, B any](tas map[K]A, f func(A) IO[B]) IO[map[K]B] { func MonadTraverseRecord[K comparable, A, B any](tas map[K]A, f Kleisli[A, B]) IO[map[K]B] {
return INTR.MonadTraverse( return INTR.MonadTraverse(
Of[map[K]B], Of[map[K]B],
Map[map[K]B, func(B) map[K]B], Map[map[K]B, func(B) map[K]B],
@@ -112,7 +112,7 @@ func MonadTraverseRecord[K comparable, A, B any](tas map[K]A, f func(A) IO[B]) I
// TraverseRecord returns a function that applies an IO-returning function to each value // TraverseRecord returns a function that applies an IO-returning function to each value
// in a map and collects the results. This is the curried version of MonadTraverseRecord. // in a map and collects the results. This is the curried version of MonadTraverseRecord.
// Executes in parallel by default. // Executes in parallel by default.
func TraverseRecord[K comparable, A, B any](f func(A) IO[B]) func(map[K]A) IO[map[K]B] { func TraverseRecord[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A, map[K]B] {
return INTR.Traverse[map[K]A]( return INTR.Traverse[map[K]A](
Of[map[K]B], Of[map[K]B],
Map[map[K]B, func(B) map[K]B], Map[map[K]B, func(B) map[K]B],
@@ -124,7 +124,7 @@ func TraverseRecord[K comparable, A, B any](f func(A) IO[B]) func(map[K]A) IO[ma
// TraverseRecordWithIndex is like TraverseRecord but the function also receives the key. // TraverseRecordWithIndex is like TraverseRecord but the function also receives the key.
// Executes in parallel by default. // Executes in parallel by default.
func TraverseRecordWithIndex[K comparable, A, B any](f func(K, A) IO[B]) func(map[K]A) IO[map[K]B] { func TraverseRecordWithIndex[K comparable, A, B any](f func(K, A) IO[B]) Kleisli[map[K]A, map[K]B] {
return INTR.TraverseWithIndex[map[K]A]( return INTR.TraverseWithIndex[map[K]A](
Of[map[K]B], Of[map[K]B],
Map[map[K]B, func(B) map[K]B], Map[map[K]B, func(B) map[K]B],
@@ -153,7 +153,7 @@ func SequenceRecord[K comparable, A any](tas map[K]IO[A]) IO[map[K]A] {
// //
// fetchUsers := func(id int) io.IO[User] { return fetchUser(id) } // fetchUsers := func(id int) io.IO[User] { return fetchUser(id) }
// users := io.MonadTraverseArraySeq([]int{1, 2, 3}, fetchUsers) // users := io.MonadTraverseArraySeq([]int{1, 2, 3}, fetchUsers)
func MonadTraverseArraySeq[A, B any](tas []A, f func(A) IO[B]) IO[[]B] { func MonadTraverseArraySeq[A, B any](tas []A, f Kleisli[A, B]) IO[[]B] {
return INTA.MonadTraverse( return INTA.MonadTraverse(
Of[[]B], Of[[]B],
Map[[]B, func(B) []B], Map[[]B, func(B) []B],
@@ -167,7 +167,7 @@ func MonadTraverseArraySeq[A, B any](tas []A, f func(A) IO[B]) IO[[]B] {
// TraverseArraySeq returns a function that applies an IO-returning function to each element // TraverseArraySeq returns a function that applies an IO-returning function to each element
// of an array and collects the results. Executes sequentially (one after another). // of an array and collects the results. Executes sequentially (one after another).
// Use this when operations must be performed in order or when parallel execution is not desired. // Use this when operations must be performed in order or when parallel execution is not desired.
func TraverseArraySeq[A, B any](f func(A) IO[B]) func([]A) IO[[]B] { func TraverseArraySeq[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return INTA.Traverse[[]A]( return INTA.Traverse[[]A](
Of[[]B], Of[[]B],
Map[[]B, func(B) []B], Map[[]B, func(B) []B],
@@ -179,7 +179,7 @@ func TraverseArraySeq[A, B any](f func(A) IO[B]) func([]A) IO[[]B] {
// TraverseArrayWithIndexSeq is like TraverseArraySeq but the function also receives the index. // TraverseArrayWithIndexSeq is like TraverseArraySeq but the function also receives the index.
// Executes sequentially (one after another). // Executes sequentially (one after another).
func TraverseArrayWithIndexSeq[A, B any](f func(int, A) IO[B]) func([]A) IO[[]B] { func TraverseArrayWithIndexSeq[A, B any](f func(int, A) IO[B]) Kleisli[[]A, []B] {
return INTA.TraverseWithIndex[[]A]( return INTA.TraverseWithIndex[[]A](
Of[[]B], Of[[]B],
Map[[]B, func(B) []B], Map[[]B, func(B) []B],
@@ -197,7 +197,7 @@ func SequenceArraySeq[A any](tas []IO[A]) IO[[]A] {
// MonadTraverseRecordSeq applies an IO-returning function to each value in a map // MonadTraverseRecordSeq applies an IO-returning function to each value in a map
// and collects the results into an IO of a map. Executes sequentially. // and collects the results into an IO of a map. Executes sequentially.
func MonadTraverseRecordSeq[K comparable, A, B any](tas map[K]A, f func(A) IO[B]) IO[map[K]B] { func MonadTraverseRecordSeq[K comparable, A, B any](tas map[K]A, f Kleisli[A, B]) IO[map[K]B] {
return INTR.MonadTraverse( return INTR.MonadTraverse(
Of[map[K]B], Of[map[K]B],
Map[map[K]B, func(B) map[K]B], Map[map[K]B, func(B) map[K]B],
@@ -210,7 +210,7 @@ func MonadTraverseRecordSeq[K comparable, A, B any](tas map[K]A, f func(A) IO[B]
// TraverseRecordSeq returns a function that applies an IO-returning function to each value // TraverseRecordSeq returns a function that applies an IO-returning function to each value
// in a map and collects the results. Executes sequentially (one after another). // in a map and collects the results. Executes sequentially (one after another).
func TraverseRecordSeq[K comparable, A, B any](f func(A) IO[B]) func(map[K]A) IO[map[K]B] { func TraverseRecordSeq[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A, map[K]B] {
return INTR.Traverse[map[K]A]( return INTR.Traverse[map[K]A](
Of[map[K]B], Of[map[K]B],
Map[map[K]B, func(B) map[K]B], Map[map[K]B, func(B) map[K]B],
@@ -223,7 +223,7 @@ func TraverseRecordSeq[K comparable, A, B any](f func(A) IO[B]) func(map[K]A) IO
// TraverseRecordWithIndeSeq is like TraverseRecordSeq but the function also receives the key. // TraverseRecordWithIndeSeq is like TraverseRecordSeq but the function also receives the key.
// Executes sequentially (one after another). // Executes sequentially (one after another).
// Note: There's a typo in the function name (Inde instead of Index) for backward compatibility. // Note: There's a typo in the function name (Inde instead of Index) for backward compatibility.
func TraverseRecordWithIndeSeq[K comparable, A, B any](f func(K, A) IO[B]) func(map[K]A) IO[map[K]B] { func TraverseRecordWithIndeSeq[K comparable, A, B any](f func(K, A) IO[B]) Kleisli[map[K]A, map[K]B] {
return INTR.TraverseWithIndex[map[K]A]( return INTR.TraverseWithIndex[map[K]A](
Of[map[K]B], Of[map[K]B],
Map[map[K]B, func(B) map[K]B], Map[map[K]B, func(B) map[K]B],

View File

@@ -19,6 +19,7 @@ import (
"github.com/IBM/fp-go/v2/internal/apply" "github.com/IBM/fp-go/v2/internal/apply"
"github.com/IBM/fp-go/v2/internal/chain" "github.com/IBM/fp-go/v2/internal/chain"
"github.com/IBM/fp-go/v2/internal/functor" "github.com/IBM/fp-go/v2/internal/functor"
L "github.com/IBM/fp-go/v2/optics/lens"
) )
// Do creates an empty context of type [S] to be used with the [Bind] operation. // Do creates an empty context of type [S] to be used with the [Bind] operation.
@@ -164,3 +165,139 @@ func ApS[E, S1, S2, T any](
fa, fa,
) )
} }
// ApSL attaches a value to a context using a lens-based setter.
// This is a convenience function that combines ApS with a lens, allowing you to use
// optics to update nested structures in a more composable way.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// This eliminates the need to manually write setter functions.
//
// Example:
//
// type Config struct {
// Host string
// Port int
// }
//
// portLens := lens.MakeLens(
// func(c Config) int { return c.Port },
// func(c Config, p int) Config { c.Port = p; return c },
// )
//
// result := F.Pipe2(
// ioeither.Of[error](Config{Host: "localhost"}),
// ioeither.ApSL(portLens, ioeither.Of[error](8080)),
// )
func ApSL[E, S, T any](
lens L.Lens[S, T],
fa IOEither[E, T],
) Operator[E, S, S] {
return ApS(lens.Set, fa)
}
// BindL attaches the result of a computation to a context using a lens-based setter.
// This is a convenience function that combines Bind with a lens, allowing you to use
// optics to update nested structures based on their current values.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The computation function f receives the current value of the focused field and returns
// an IOEither that produces the new value.
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// increment := func(v int) ioeither.IOEither[error, int] {
// return ioeither.TryCatch(func() (int, error) {
// if v >= 100 {
// return 0, errors.New("overflow")
// }
// return v + 1, nil
// })
// }
//
// result := F.Pipe1(
// ioeither.Of[error](Counter{Value: 42}),
// ioeither.BindL(valueLens, increment),
// )
func BindL[E, S, T any](
lens L.Lens[S, T],
f func(T) IOEither[E, T],
) Operator[E, S, S] {
return Bind[E, S, S, T](lens.Set, func(s S) IOEither[E, T] {
return f(lens.Get(s))
})
}
// LetL attaches the result of a pure computation to a context using a lens-based setter.
// This is a convenience function that combines Let with a lens, allowing you to use
// optics to update nested structures with pure transformations.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The transformation function f receives the current value of the focused field and returns
// the new value directly (not wrapped in IOEither).
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// double := func(v int) int { return v * 2 }
//
// result := F.Pipe1(
// ioeither.Of[error](Counter{Value: 21}),
// ioeither.LetL(valueLens, double),
// )
func LetL[E, S, T any](
lens L.Lens[S, T],
f func(T) T,
) Operator[E, S, S] {
return Let[E, S, S, T](lens.Set, func(s S) T {
return f(lens.Get(s))
})
}
// LetToL attaches a constant value to a context using a lens-based setter.
// This is a convenience function that combines LetTo with a lens, allowing you to use
// optics to set nested fields to specific values.
//
// The lens parameter provides the setter for a field within the structure S.
// Unlike LetL which transforms the current value, LetToL simply replaces it with
// the provided constant value b.
//
// Example:
//
// type Config struct {
// Debug bool
// Timeout int
// }
//
// debugLens := lens.MakeLens(
// func(c Config) bool { return c.Debug },
// func(c Config, d bool) Config { c.Debug = d; return c },
// )
//
// result := F.Pipe1(
// ioeither.Of[error](Config{Debug: true, Timeout: 30}),
// ioeither.LetToL(debugLens, false),
// )
func LetToL[E, S, T any](
lens L.Lens[S, T],
b T,
) Operator[E, S, S] {
return LetTo[E, S, S, T](lens.Set, b)
}

View File

@@ -22,7 +22,7 @@ import (
) )
// TraverseArray transforms an array // TraverseArray transforms an array
func TraverseArray[A, B any](f func(A) IOOption[B]) func([]A) IOOption[[]B] { func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return function.Flow2( return function.Flow2(
io.TraverseArray(f), io.TraverseArray(f),
io.Map(option.SequenceArray[B]), io.Map(option.SequenceArray[B]),
@@ -30,7 +30,7 @@ func TraverseArray[A, B any](f func(A) IOOption[B]) func([]A) IOOption[[]B] {
} }
// TraverseArrayWithIndex transforms an array // TraverseArrayWithIndex transforms an array
func TraverseArrayWithIndex[A, B any](f func(int, A) IOOption[B]) func([]A) IOOption[[]B] { func TraverseArrayWithIndex[A, B any](f func(int, A) IOOption[B]) Kleisli[[]A, []B] {
return function.Flow2( return function.Flow2(
io.TraverseArrayWithIndex(f), io.TraverseArrayWithIndex(f),
io.Map(option.SequenceArray[B]), io.Map(option.SequenceArray[B]),

View File

@@ -19,6 +19,7 @@ import (
"github.com/IBM/fp-go/v2/internal/apply" "github.com/IBM/fp-go/v2/internal/apply"
"github.com/IBM/fp-go/v2/internal/chain" "github.com/IBM/fp-go/v2/internal/chain"
"github.com/IBM/fp-go/v2/internal/functor" "github.com/IBM/fp-go/v2/internal/functor"
L "github.com/IBM/fp-go/v2/optics/lens"
) )
// Do creates an empty context of type [S] to be used with the [Bind] operation. // Do creates an empty context of type [S] to be used with the [Bind] operation.
@@ -72,8 +73,8 @@ func Do[S any](
// ) // )
func Bind[S1, S2, T any]( func Bind[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
f func(S1) IOOption[T], f Kleisli[S1, T],
) func(IOOption[S1]) IOOption[S2] { ) Kleisli[IOOption[S1], S2] {
return chain.Bind( return chain.Bind(
Chain[S1, S2], Chain[S1, S2],
Map[T, S2], Map[T, S2],
@@ -86,7 +87,7 @@ func Bind[S1, S2, T any](
func Let[S1, S2, T any]( func Let[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
f func(S1) T, f func(S1) T,
) func(IOOption[S1]) IOOption[S2] { ) Kleisli[IOOption[S1], S2] {
return functor.Let( return functor.Let(
Map[S1, S2], Map[S1, S2],
setter, setter,
@@ -98,7 +99,7 @@ func Let[S1, S2, T any](
func LetTo[S1, S2, T any]( func LetTo[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
b T, b T,
) func(IOOption[S1]) IOOption[S2] { ) Kleisli[IOOption[S1], S2] {
return functor.LetTo( return functor.LetTo(
Map[S1, S2], Map[S1, S2],
setter, setter,
@@ -109,7 +110,7 @@ func LetTo[S1, S2, T any](
// BindTo initializes a new state [S1] from a value [T] // BindTo initializes a new state [S1] from a value [T]
func BindTo[S1, T any]( func BindTo[S1, T any](
setter func(T) S1, setter func(T) S1,
) func(IOOption[T]) IOOption[S1] { ) Kleisli[IOOption[T], S1] {
return chain.BindTo( return chain.BindTo(
Map[T, S1], Map[T, S1],
setter, setter,
@@ -152,7 +153,7 @@ func BindTo[S1, T any](
func ApS[S1, S2, T any]( func ApS[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
fa IOOption[T], fa IOOption[T],
) func(IOOption[S1]) IOOption[S2] { ) Kleisli[IOOption[S1], S2] {
return apply.ApS( return apply.ApS(
Ap[S2, T], Ap[S2, T],
Map[S1, func(T) S2], Map[S1, func(T) S2],
@@ -160,3 +161,136 @@ func ApS[S1, S2, T any](
fa, fa,
) )
} }
// ApSL attaches a value to a context using a lens-based setter.
// This is a convenience function that combines ApS with a lens, allowing you to use
// optics to update nested structures in a more composable way.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// This eliminates the need to manually write setter functions.
//
// Example:
//
// type State struct {
// Name string
// Age int
// }
//
// ageLens := lens.MakeLens(
// func(s State) int { return s.Age },
// func(s State, a int) State { s.Age = a; return s },
// )
//
// result := F.Pipe2(
// iooption.Of(State{Name: "Alice"}),
// iooption.ApSL(ageLens, iooption.Some(30)),
// )
func ApSL[S, T any](
lens L.Lens[S, T],
fa IOOption[T],
) Kleisli[IOOption[S], S] {
return ApS(lens.Set, fa)
}
// BindL attaches the result of a computation to a context using a lens-based setter.
// This is a convenience function that combines Bind with a lens, allowing you to use
// optics to update nested structures based on their current values.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The computation function f receives the current value of the focused field and returns
// an IOOption that produces the new value.
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Increment the counter, but return None if it would exceed 100
// increment := func(v int) iooption.IOOption[int] {
// return iooption.FromIO(io.Of(v + 1))
// }
//
// result := F.Pipe1(
// iooption.Of(Counter{Value: 42}),
// iooption.BindL(valueLens, increment),
// ) // IOOption[Counter{Value: 43}]
func BindL[S, T any](
lens L.Lens[S, T],
f Kleisli[T, T],
) Kleisli[IOOption[S], S] {
return Bind[S, S, T](lens.Set, func(s S) IOOption[T] {
return f(lens.Get(s))
})
}
// LetL attaches the result of a pure computation to a context using a lens-based setter.
// This is a convenience function that combines Let with a lens, allowing you to use
// optics to update nested structures with pure transformations.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The transformation function f receives the current value of the focused field and returns
// the new value directly (not wrapped in IOOption).
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Double the counter value
// double := func(v int) int { return v * 2 }
//
// result := F.Pipe1(
// iooption.Of(Counter{Value: 21}),
// iooption.LetL(valueLens, double),
// ) // IOOption[Counter{Value: 42}]
func LetL[S, T any](
lens L.Lens[S, T],
f func(T) T,
) Kleisli[IOOption[S], S] {
return Let[S, S, T](lens.Set, func(s S) T {
return f(lens.Get(s))
})
}
// LetToL attaches a constant value to a context using a lens-based setter.
// This is a convenience function that combines LetTo with a lens, allowing you to use
// optics to set nested fields to specific values.
//
// The lens parameter provides the setter for a field within the structure S.
// Unlike LetL which transforms the current value, LetToL simply replaces it with
// the provided constant value b.
//
// Example:
//
// type Config struct {
// Debug bool
// Timeout int
// }
//
// debugLens := lens.MakeLens(
// func(c Config) bool { return c.Debug },
// func(c Config, d bool) Config { c.Debug = d; return c },
// )
//
// result := F.Pipe1(
// iooption.Of(Config{Debug: true, Timeout: 30}),
// iooption.LetToL(debugLens, false),
// ) // IOOption[Config{Debug: false, Timeout: 30}]
func LetToL[S, T any](
lens L.Lens[S, T],
b T,
) Kleisli[IOOption[S], S] {
return LetTo[S, S, T](lens.Set, b)
}

View File

@@ -24,7 +24,7 @@ import (
// whether the body action returns and error or not. // whether the body action returns and error or not.
func Bracket[A, B, ANY any]( func Bracket[A, B, ANY any](
acquire IOOption[A], acquire IOOption[A],
use func(A) IOOption[B], use Kleisli[A, B],
release func(A, Option[B]) IOOption[ANY], release func(A, Option[B]) IOOption[ANY],
) IOOption[B] { ) IOOption[B] {
return G.Bracket[IOOption[A], IOOption[B], IOOption[ANY], Option[B], A, B]( return G.Bracket[IOOption[A], IOOption[B], IOOption[ANY], Option[B], A, B](

File diff suppressed because it is too large Load Diff

View File

@@ -19,7 +19,7 @@ import "github.com/IBM/fp-go/v2/function"
// WithResource constructs a function that creates a resource, then operates on it and then releases the resource // WithResource constructs a function that creates a resource, then operates on it and then releases the resource
func WithResource[ func WithResource[
R, A, ANY any](onCreate IOOption[R], onRelease func(R) IOOption[ANY]) func(func(R) IOOption[A]) IOOption[A] { R, A, ANY any](onCreate IOOption[R], onRelease func(R) IOOption[ANY]) Kleisli[Kleisli[R, A], A] {
// simply map to implementation of bracket // simply map to implementation of bracket
return function.Bind13of3(Bracket[R, A, ANY])(onCreate, function.Ignore2of2[Option[A]](onRelease)) return function.Bind13of3(Bracket[R, A, ANY])(onCreate, function.Ignore2of2[Option[A]](onRelease))
} }

View File

@@ -23,7 +23,7 @@ import (
// Retrying will retry the actions according to the check policy // Retrying will retry the actions according to the check policy
func Retrying[A any]( func Retrying[A any](
policy R.RetryPolicy, policy R.RetryPolicy,
action func(R.RetryStatus) IOOption[A], action Kleisli[R.RetryStatus, A],
check func(A) bool, check func(A) bool,
) IOOption[A] { ) IOOption[A] {
// get an implementation for the types // get an implementation for the types

View File

@@ -20,6 +20,7 @@ import (
"github.com/IBM/fp-go/v2/io" "github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/lazy" "github.com/IBM/fp-go/v2/lazy"
"github.com/IBM/fp-go/v2/option" "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/reader"
) )
type ( type (
@@ -31,4 +32,7 @@ type (
// IOOption represents a synchronous computation that may fail // IOOption represents a synchronous computation that may fail
// refer to [https://andywhite.xyz/posts/2021-01-27-rte-foundations/#ioeitherlte-agt] for more details // refer to [https://andywhite.xyz/posts/2021-01-27-rte-foundations/#ioeitherlte-agt] for more details
IOOption[A any] = io.IO[Option[A]] IOOption[A any] = io.IO[Option[A]]
Kleisli[A, B any] = reader.Reader[A, IOOption[B]]
Operator[A, B any] = Kleisli[IOOption[A], B]
) )

View File

@@ -71,8 +71,8 @@ func Do[S any](
// ) // Produces: {1,10}, {1,20}, {2,20}, {2,40}, {3,30}, {3,60} // ) // Produces: {1,10}, {1,20}, {2,20}, {2,40}, {3,30}, {3,60}
func Bind[S1, S2, T any]( func Bind[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
f func(S1) Iterator[T], f Kleisli[S1, T],
) func(Iterator[S1]) Iterator[S2] { ) Kleisli[Iterator[S1], S2] {
return G.Bind[Iterator[S1], Iterator[S2], Iterator[T], S1, S2, T](setter, f) return G.Bind[Iterator[S1], Iterator[S2], Iterator[T], S1, S2, T](setter, f)
} }
@@ -80,7 +80,7 @@ func Bind[S1, S2, T any](
func Let[S1, S2, T any]( func Let[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
f func(S1) T, f func(S1) T,
) func(Iterator[S1]) Iterator[S2] { ) Kleisli[Iterator[S1], S2] {
return G.Let[Iterator[S1], Iterator[S2], S1, S2, T](setter, f) return G.Let[Iterator[S1], Iterator[S2], S1, S2, T](setter, f)
} }
@@ -88,14 +88,14 @@ func Let[S1, S2, T any](
func LetTo[S1, S2, T any]( func LetTo[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
b T, b T,
) func(Iterator[S1]) Iterator[S2] { ) Kleisli[Iterator[S1], S2] {
return G.LetTo[Iterator[S1], Iterator[S2], S1, S2, T](setter, b) return G.LetTo[Iterator[S1], Iterator[S2], S1, S2, T](setter, b)
} }
// BindTo initializes a new state [S1] from a value [T] // BindTo initializes a new state [S1] from a value [T]
func BindTo[S1, T any]( func BindTo[S1, T any](
setter func(T) S1, setter func(T) S1,
) func(Iterator[T]) Iterator[S1] { ) Kleisli[Iterator[T], S1] {
return G.BindTo[Iterator[S1], Iterator[T], S1, T](setter) return G.BindTo[Iterator[S1], Iterator[T], S1, T](setter)
} }
@@ -135,6 +135,6 @@ func BindTo[S1, T any](
func ApS[S1, S2, T any]( func ApS[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
fa Iterator[T], fa Iterator[T],
) func(Iterator[S1]) Iterator[S2] { ) Kleisli[Iterator[S1], S2] {
return G.ApS[Iterator[func(T) S2], Iterator[S1], Iterator[S2], Iterator[T], S1, S2, T](setter, fa) return G.ApS[Iterator[func(T) S2], Iterator[S1], Iterator[S2], Iterator[T], S1, S2, T](setter, fa)
} }

View File

@@ -22,6 +22,6 @@ import (
// Compress returns an [Iterator] that filters elements from a data [Iterator] returning only those that have a corresponding element in selector [Iterator] that evaluates to `true`. // Compress returns an [Iterator] that filters elements from a data [Iterator] returning only those that have a corresponding element in selector [Iterator] that evaluates to `true`.
// Stops when either the data or selectors iterator has been exhausted. // Stops when either the data or selectors iterator has been exhausted.
func Compress[U any](sel Iterator[bool]) func(Iterator[U]) Iterator[U] { func Compress[U any](sel Iterator[bool]) Kleisli[Iterator[U], U] {
return G.Compress[Iterator[U], Iterator[bool], Iterator[P.Pair[U, bool]]](sel) return G.Compress[Iterator[U], Iterator[bool], Iterator[P.Pair[U, bool]]](sel)
} }

View File

@@ -21,6 +21,6 @@ import (
// DropWhile creates an [Iterator] that drops elements from the [Iterator] as long as the predicate is true; afterwards, returns every element. // DropWhile creates an [Iterator] that drops elements from the [Iterator] as long as the predicate is true; afterwards, returns every element.
// Note, the [Iterator] does not produce any output until the predicate first becomes false // Note, the [Iterator] does not produce any output until the predicate first becomes false
func DropWhile[U any](pred func(U) bool) func(Iterator[U]) Iterator[U] { func DropWhile[U any](pred func(U) bool) Kleisli[Iterator[U], U] {
return G.DropWhile[Iterator[U]](pred) return G.DropWhile[Iterator[U]](pred)
} }

View File

@@ -18,15 +18,11 @@ package stateless
import ( import (
"github.com/IBM/fp-go/v2/iooption" "github.com/IBM/fp-go/v2/iooption"
G "github.com/IBM/fp-go/v2/iterator/stateless/generic" G "github.com/IBM/fp-go/v2/iterator/stateless/generic"
L "github.com/IBM/fp-go/v2/lazy"
M "github.com/IBM/fp-go/v2/monoid" M "github.com/IBM/fp-go/v2/monoid"
O "github.com/IBM/fp-go/v2/option" O "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/pair" "github.com/IBM/fp-go/v2/pair"
) )
// Iterator represents a stateless, pure way to iterate over a sequence
type Iterator[U any] L.Lazy[O.Option[pair.Pair[Iterator[U], U]]]
// Next returns the [Iterator] for the next element in an iterator [pair.Pair] // Next returns the [Iterator] for the next element in an iterator [pair.Pair]
func Next[U any](m pair.Pair[Iterator[U], U]) Iterator[U] { func Next[U any](m pair.Pair[Iterator[U], U]) Iterator[U] {
return pair.Head(m) return pair.Head(m)
@@ -68,15 +64,15 @@ func MonadMap[U, V any](ma Iterator[U], f func(U) V) Iterator[V] {
} }
// Map transforms an [Iterator] of type [U] into an [Iterator] of type [V] via a mapping function // Map transforms an [Iterator] of type [U] into an [Iterator] of type [V] via a mapping function
func Map[U, V any](f func(U) V) func(ma Iterator[U]) Iterator[V] { func Map[U, V any](f func(U) V) Operator[U, V] {
return G.Map[Iterator[V], Iterator[U]](f) return G.Map[Iterator[V], Iterator[U]](f)
} }
func MonadChain[U, V any](ma Iterator[U], f func(U) Iterator[V]) Iterator[V] { func MonadChain[U, V any](ma Iterator[U], f Kleisli[U, V]) Iterator[V] {
return G.MonadChain[Iterator[V], Iterator[U]](ma, f) return G.MonadChain[Iterator[V], Iterator[U]](ma, f)
} }
func Chain[U, V any](f func(U) Iterator[V]) func(Iterator[U]) Iterator[V] { func Chain[U, V any](f Kleisli[U, V]) Kleisli[Iterator[U], V] {
return G.Chain[Iterator[V], Iterator[U]](f) return G.Chain[Iterator[V], Iterator[U]](f)
} }
@@ -101,17 +97,17 @@ func Replicate[U any](a U) Iterator[U] {
} }
// FilterMap filters and transforms the content of an iterator // FilterMap filters and transforms the content of an iterator
func FilterMap[U, V any](f func(U) O.Option[V]) func(ma Iterator[U]) Iterator[V] { func FilterMap[U, V any](f func(U) O.Option[V]) Operator[U, V] {
return G.FilterMap[Iterator[V], Iterator[U]](f) return G.FilterMap[Iterator[V], Iterator[U]](f)
} }
// Filter filters the content of an iterator // Filter filters the content of an iterator
func Filter[U any](f func(U) bool) func(ma Iterator[U]) Iterator[U] { func Filter[U any](f func(U) bool) Operator[U, U] {
return G.Filter[Iterator[U]](f) return G.Filter[Iterator[U]](f)
} }
// Ap is the applicative functor for iterators // Ap is the applicative functor for iterators
func Ap[V, U any](ma Iterator[U]) func(Iterator[func(U) V]) Iterator[V] { func Ap[V, U any](ma Iterator[U]) Operator[func(U) V, V] {
return G.Ap[Iterator[func(U) V], Iterator[V]](ma) return G.Ap[Iterator[func(U) V], Iterator[V]](ma)
} }
@@ -132,7 +128,7 @@ func Count(start int) Iterator[int] {
} }
// FilterChain filters and transforms the content of an iterator // FilterChain filters and transforms the content of an iterator
func FilterChain[U, V any](f func(U) O.Option[Iterator[V]]) func(ma Iterator[U]) Iterator[V] { func FilterChain[U, V any](f func(U) O.Option[Iterator[V]]) Operator[U, V] {
return G.FilterChain[Iterator[Iterator[V]], Iterator[V], Iterator[U]](f) return G.FilterChain[Iterator[Iterator[V]], Iterator[V], Iterator[U]](f)
} }
@@ -146,10 +142,10 @@ func Fold[U any](m M.Monoid[U]) func(Iterator[U]) U {
return G.Fold[Iterator[U]](m) return G.Fold[Iterator[U]](m)
} }
func MonadChainFirst[U, V any](ma Iterator[U], f func(U) Iterator[V]) Iterator[U] { func MonadChainFirst[U, V any](ma Iterator[U], f Kleisli[U, V]) Iterator[U] {
return G.MonadChainFirst[Iterator[V], Iterator[U], U, V](ma, f) return G.MonadChainFirst[Iterator[V], Iterator[U], U, V](ma, f)
} }
func ChainFirst[U, V any](f func(U) Iterator[V]) func(Iterator[U]) Iterator[U] { func ChainFirst[U, V any](f Kleisli[U, V]) Operator[U, U] {
return G.ChainFirst[Iterator[V], Iterator[U], U, V](f) return G.ChainFirst[Iterator[V], Iterator[U], U, V](f)
} }

View File

@@ -15,8 +15,19 @@
package stateless package stateless
import "github.com/IBM/fp-go/v2/option" import (
L "github.com/IBM/fp-go/v2/lazy"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/pair"
"github.com/IBM/fp-go/v2/reader"
)
type ( type (
Option[A any] = option.Option[A] Option[A any] = option.Option[A]
// Iterator represents a stateless, pure way to iterate over a sequence
Iterator[U any] L.Lazy[Option[pair.Pair[Iterator[U], U]]]
Kleisli[A, B any] = reader.Reader[A, Iterator[B]]
Operator[A, B any] = Kleisli[Iterator[A], B]
) )

View File

@@ -16,6 +16,8 @@
package lazy package lazy
import ( import (
L "github.com/IBM/fp-go/v2/optics/lens"
"github.com/IBM/fp-go/v2/io" "github.com/IBM/fp-go/v2/io"
) )
@@ -70,8 +72,8 @@ func Do[S any](
// ) // )
func Bind[S1, S2, T any]( func Bind[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
f func(S1) Lazy[T], f Kleisli[S1, T],
) func(Lazy[S1]) Lazy[S2] { ) Kleisli[Lazy[S1], S2] {
return io.Bind(setter, f) return io.Bind(setter, f)
} }
@@ -79,7 +81,7 @@ func Bind[S1, S2, T any](
func Let[S1, S2, T any]( func Let[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
f func(S1) T, f func(S1) T,
) func(Lazy[S1]) Lazy[S2] { ) Kleisli[Lazy[S1], S2] {
return io.Let(setter, f) return io.Let(setter, f)
} }
@@ -87,14 +89,14 @@ func Let[S1, S2, T any](
func LetTo[S1, S2, T any]( func LetTo[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
b T, b T,
) func(Lazy[S1]) Lazy[S2] { ) Kleisli[Lazy[S1], S2] {
return io.LetTo(setter, b) return io.LetTo(setter, b)
} }
// BindTo initializes a new state [S1] from a value [T] // BindTo initializes a new state [S1] from a value [T]
func BindTo[S1, T any]( func BindTo[S1, T any](
setter func(T) S1, setter func(T) S1,
) func(Lazy[T]) Lazy[S1] { ) Kleisli[Lazy[T], S1] {
return io.BindTo(setter) return io.BindTo(setter)
} }
@@ -134,6 +136,143 @@ func BindTo[S1, T any](
func ApS[S1, S2, T any]( func ApS[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
fa Lazy[T], fa Lazy[T],
) func(Lazy[S1]) Lazy[S2] { ) Kleisli[Lazy[S1], S2] {
return io.ApS(setter, fa) return io.ApS(setter, fa)
} }
// ApSL is a variant of ApS that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. This allows you to work with nested fields without manually managing
// the update logic.
//
// Example:
//
// type Config struct {
// Host string
// Port int
// }
// type State struct {
// Config Config
// Data string
// }
//
// configLens := L.Prop[State, Config]("Config")
// getConfig := lazy.MakeLazy(func() Config { return Config{Host: "localhost", Port: 8080} })
//
// result := F.Pipe2(
// lazy.Do(State{}),
// lazy.ApSL(configLens, getConfig),
// )
func ApSL[S, T any](
lens L.Lens[S, T],
fa Lazy[T],
) Kleisli[Lazy[S], S] {
return io.ApSL(lens, fa)
}
// BindL is a variant of Bind that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The function f receives the current value of the focused field and
// returns a new computation that produces an updated value.
//
// Example:
//
// type Config struct {
// Host string
// Port int
// }
// type State struct {
// Config Config
// Data string
// }
//
// configLens := L.Prop[State, Config]("Config")
//
// result := F.Pipe2(
// lazy.Do(State{Config: Config{Host: "localhost"}}),
// lazy.BindL(configLens, func(cfg Config) lazy.Lazy[Config] {
// return lazy.MakeLazy(func() Config {
// cfg.Port = 8080
// return cfg
// })
// }),
// )
func BindL[S, T any](
lens L.Lens[S, T],
f Kleisli[T, T],
) Kleisli[Lazy[S], S] {
return io.BindL(lens, f)
}
// LetL is a variant of Let that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The function f receives the current value of the focused field and
// returns a new value (without wrapping in a monad).
//
// Example:
//
// type Config struct {
// Host string
// Port int
// }
// type State struct {
// Config Config
// Data string
// }
//
// configLens := L.Prop[State, Config]("Config")
//
// result := F.Pipe2(
// lazy.Do(State{Config: Config{Host: "localhost"}}),
// lazy.LetL(configLens, func(cfg Config) Config {
// cfg.Port = 8080
// return cfg
// }),
// )
func LetL[S, T any](
lens L.Lens[S, T],
f func(T) T,
) Kleisli[Lazy[S], S] {
return io.LetL(lens, f)
}
// LetToL is a variant of LetTo that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The value b is set directly to the focused field.
//
// Example:
//
// type Config struct {
// Host string
// Port int
// }
// type State struct {
// Config Config
// Data string
// }
//
// configLens := L.Prop[State, Config]("Config")
// newConfig := Config{Host: "localhost", Port: 8080}
//
// result := F.Pipe2(
// lazy.Do(State{}),
// lazy.LetToL(configLens, newConfig),
// )
func LetToL[S, T any](
lens L.Lens[S, T],
b T,
) Kleisli[Lazy[S], S] {
return io.LetToL(lens, b)
}

View File

@@ -21,9 +21,6 @@ import (
"github.com/IBM/fp-go/v2/io" "github.com/IBM/fp-go/v2/io"
) )
// Lazy represents a synchronous computation without side effects
type Lazy[A any] = func() A
func Of[A any](a A) Lazy[A] { func Of[A any](a A) Lazy[A] {
return io.Of(a) return io.Of(a)
} }
@@ -53,17 +50,17 @@ func MonadMapTo[A, B any](fa Lazy[A], b B) Lazy[B] {
return io.MonadMapTo(fa, b) return io.MonadMapTo(fa, b)
} }
func MapTo[A, B any](b B) func(Lazy[A]) Lazy[B] { func MapTo[A, B any](b B) Kleisli[Lazy[A], B] {
return io.MapTo[A](b) return io.MapTo[A](b)
} }
// MonadChain composes computations in sequence, using the return value of one computation to determine the next computation. // MonadChain composes computations in sequence, using the return value of one computation to determine the next computation.
func MonadChain[A, B any](fa Lazy[A], f func(A) Lazy[B]) Lazy[B] { func MonadChain[A, B any](fa Lazy[A], f Kleisli[A, B]) Lazy[B] {
return io.MonadChain(fa, f) return io.MonadChain(fa, f)
} }
// Chain composes computations in sequence, using the return value of one computation to determine the next computation. // Chain composes computations in sequence, using the return value of one computation to determine the next computation.
func Chain[A, B any](f func(A) Lazy[B]) func(Lazy[A]) Lazy[B] { func Chain[A, B any](f Kleisli[A, B]) Kleisli[Lazy[A], B] {
return io.Chain(f) return io.Chain(f)
} }
@@ -86,13 +83,13 @@ func Memoize[A any](ma Lazy[A]) Lazy[A] {
// MonadChainFirst composes computations in sequence, using the return value of one computation to determine the next computation and // MonadChainFirst composes computations in sequence, using the return value of one computation to determine the next computation and
// keeping only the result of the first. // keeping only the result of the first.
func MonadChainFirst[A, B any](fa Lazy[A], f func(A) Lazy[B]) Lazy[A] { func MonadChainFirst[A, B any](fa Lazy[A], f Kleisli[A, B]) Lazy[A] {
return io.MonadChainFirst(fa, f) return io.MonadChainFirst(fa, f)
} }
// ChainFirst composes computations in sequence, using the return value of one computation to determine the next computation and // ChainFirst composes computations in sequence, using the return value of one computation to determine the next computation and
// keeping only the result of the first. // keeping only the result of the first.
func ChainFirst[A, B any](f func(A) Lazy[B]) func(Lazy[A]) Lazy[A] { func ChainFirst[A, B any](f Kleisli[A, B]) Kleisli[Lazy[A], A] {
return io.ChainFirst(f) return io.ChainFirst(f)
} }
@@ -102,7 +99,7 @@ func MonadApFirst[A, B any](first Lazy[A], second Lazy[B]) Lazy[A] {
} }
// ApFirst combines two effectful actions, keeping only the result of the first. // ApFirst combines two effectful actions, keeping only the result of the first.
func ApFirst[A, B any](second Lazy[B]) func(Lazy[A]) Lazy[A] { func ApFirst[A, B any](second Lazy[B]) Kleisli[Lazy[A], A] {
return io.ApFirst[A](second) return io.ApFirst[A](second)
} }
@@ -112,7 +109,7 @@ func MonadApSecond[A, B any](first Lazy[A], second Lazy[B]) Lazy[B] {
} }
// ApSecond combines two effectful actions, keeping only the result of the second. // ApSecond combines two effectful actions, keeping only the result of the second.
func ApSecond[A, B any](second Lazy[B]) func(Lazy[A]) Lazy[B] { func ApSecond[A, B any](second Lazy[B]) Kleisli[Lazy[A], B] {
return io.ApSecond[A](second) return io.ApSecond[A](second)
} }
@@ -122,7 +119,7 @@ func MonadChainTo[A, B any](fa Lazy[A], fb Lazy[B]) Lazy[B] {
} }
// ChainTo composes computations in sequence, ignoring the return value of the first computation // ChainTo composes computations in sequence, ignoring the return value of the first computation
func ChainTo[A, B any](fb Lazy[B]) func(Lazy[A]) Lazy[B] { func ChainTo[A, B any](fb Lazy[B]) Kleisli[Lazy[A], B] {
return io.ChainTo[A](fb) return io.ChainTo[A](fb)
} }

View File

@@ -27,7 +27,7 @@ import (
// check - checks if the result of the action needs to be retried // check - checks if the result of the action needs to be retried
func Retrying[A any]( func Retrying[A any](
policy R.RetryPolicy, policy R.RetryPolicy,
action func(R.RetryStatus) Lazy[A], action Kleisli[R.RetryStatus, A],
check func(A) bool, check func(A) bool,
) Lazy[A] { ) Lazy[A] {
return io.Retrying(policy, action, check) return io.Retrying(policy, action, check)

View File

@@ -17,19 +17,19 @@ package lazy
import "github.com/IBM/fp-go/v2/io" import "github.com/IBM/fp-go/v2/io"
func MonadTraverseArray[A, B any](tas []A, f func(A) Lazy[B]) Lazy[[]B] { func MonadTraverseArray[A, B any](tas []A, f Kleisli[A, B]) Lazy[[]B] {
return io.MonadTraverseArray(tas, f) return io.MonadTraverseArray(tas, f)
} }
// TraverseArray applies a function returning an [IO] to all elements in an array and the // TraverseArray applies a function returning an [IO] to all elements in an array and the
// transforms this into an [IO] of that array // transforms this into an [IO] of that array
func TraverseArray[A, B any](f func(A) Lazy[B]) func([]A) Lazy[[]B] { func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return io.TraverseArray(f) return io.TraverseArray(f)
} }
// TraverseArrayWithIndex applies a function returning an [IO] to all elements in an array and the // TraverseArrayWithIndex applies a function returning an [IO] to all elements in an array and the
// transforms this into an [IO] of that array // transforms this into an [IO] of that array
func TraverseArrayWithIndex[A, B any](f func(int, A) Lazy[B]) func([]A) Lazy[[]B] { func TraverseArrayWithIndex[A, B any](f func(int, A) Lazy[B]) Kleisli[[]A, []B] {
return io.TraverseArrayWithIndex(f) return io.TraverseArrayWithIndex(f)
} }
@@ -38,19 +38,19 @@ func SequenceArray[A any](tas []Lazy[A]) Lazy[[]A] {
return io.SequenceArray(tas) return io.SequenceArray(tas)
} }
func MonadTraverseRecord[K comparable, A, B any](tas map[K]A, f func(A) Lazy[B]) Lazy[map[K]B] { func MonadTraverseRecord[K comparable, A, B any](tas map[K]A, f Kleisli[A, B]) Lazy[map[K]B] {
return io.MonadTraverseRecord(tas, f) return io.MonadTraverseRecord(tas, f)
} }
// TraverseRecord applies a function returning an [IO] to all elements in a record and the // TraverseRecord applies a function returning an [IO] to all elements in a record and the
// transforms this into an [IO] of that record // transforms this into an [IO] of that record
func TraverseRecord[K comparable, A, B any](f func(A) Lazy[B]) func(map[K]A) Lazy[map[K]B] { func TraverseRecord[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A, map[K]B] {
return io.TraverseRecord[K](f) return io.TraverseRecord[K](f)
} }
// TraverseRecord applies a function returning an [IO] to all elements in a record and the // TraverseRecord applies a function returning an [IO] to all elements in a record and the
// transforms this into an [IO] of that record // transforms this into an [IO] of that record
func TraverseRecordWithIndex[K comparable, A, B any](f func(K, A) Lazy[B]) func(map[K]A) Lazy[map[K]B] { func TraverseRecordWithIndex[K comparable, A, B any](f func(K, A) Lazy[B]) Kleisli[map[K]A, map[K]B] {
return io.TraverseRecordWithIndex[K](f) return io.TraverseRecordWithIndex[K](f)
} }

9
v2/lazy/types.go Normal file
View File

@@ -0,0 +1,9 @@
package lazy
type (
// Lazy represents a synchronous computation without side effects
Lazy[A any] = func() A
Kleisli[A, B any] = func(A) Lazy[B]
Operator[A, B any] = Kleisli[Lazy[A], B]
)

View File

@@ -17,10 +17,7 @@
package lens package lens
import ( import (
EM "github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/function"
F "github.com/IBM/fp-go/v2/function" F "github.com/IBM/fp-go/v2/function"
O "github.com/IBM/fp-go/v2/option"
) )
// setCopy wraps a setter for a pointer into a setter that first creates a copy before // setCopy wraps a setter for a pointer into a setter that first creates a copy before
@@ -44,32 +41,156 @@ func setCopyCurried[SET ~func(A) Endomorphism[*S], S, A any](setter SET) func(a
} }
} }
// MakeLens creates a [Lens] based on a getter and a setter function. Make sure that the setter creates a (shallow) copy of the // MakeLens creates a [Lens] based on a getter and a setter F.
// data. This happens automatically if the data is passed by value. For pointers consider to use `MakeLensRef` //
// and for other kinds of data structures that are copied by reference make sure the setter creates the copy. // The setter must create a (shallow) copy of the data structure. This happens automatically
// when the data is passed by value. For pointer-based structures, use [MakeLensRef] instead.
// For other reference types (slices, maps), ensure the setter creates a copy.
//
// Type Parameters:
// - GET: Getter function type (S → A)
// - SET: Setter function type (S, A → S)
// - S: Source structure type
// - A: Focus/field type
//
// Parameters:
// - get: Function to extract value A from structure S
// - set: Function to update value A in structure S, returning a new S
//
// Returns:
// - A Lens[S, A] that can get and set values immutably
//
// Example:
//
// type Person struct {
// Name string
// Age int
// }
//
// nameLens := lens.MakeLens(
// func(p Person) string { return p.Name },
// func(p Person, name string) Person {
// p.Name = name
// return p
// },
// )
//
// person := Person{Name: "Alice", Age: 30}
// name := nameLens.Get(person) // "Alice"
// updated := nameLens.Set("Bob")(person) // Person{Name: "Bob", Age: 30}
func MakeLens[GET ~func(S) A, SET ~func(S, A) S, S, A any](get GET, set SET) Lens[S, A] { func MakeLens[GET ~func(S) A, SET ~func(S, A) S, S, A any](get GET, set SET) Lens[S, A] {
return MakeLensCurried(get, function.Curry2(F.Swap(set))) return MakeLensCurried(get, F.Curry2(F.Swap(set)))
} }
// MakeLensCurried creates a [Lens] based on a getter and a setter function. Make sure that the setter creates a (shallow) copy of the // MakeLensCurried creates a [Lens] with a curried setter F.
// data. This happens automatically if the data is passed by value. For pointers consider to use `MakeLensRef` //
// and for other kinds of data structures that are copied by reference make sure the setter creates the copy. // This is similar to [MakeLens] but accepts a curried setter (A → S → S) instead of
// an uncurried one (S, A → S). The curried form is more composable in functional pipelines.
//
// The setter must create a (shallow) copy of the data structure. This happens automatically
// when the data is passed by value. For pointer-based structures, use [MakeLensRefCurried].
//
// Type Parameters:
// - GET: Getter function type (S → A)
// - SET: Curried setter function type (A → S → S)
// - S: Source structure type
// - A: Focus/field type
//
// Parameters:
// - get: Function to extract value A from structure S
// - set: Curried function to update value A in structure S
//
// Returns:
// - A Lens[S, A] that can get and set values immutably
//
// Example:
//
// nameLens := lens.MakeLensCurried(
// func(p Person) string { return p.Name },
// func(name string) func(Person) Person {
// return func(p Person) Person {
// p.Name = name
// return p
// }
// },
// )
func MakeLensCurried[GET ~func(S) A, SET ~func(A) Endomorphism[S], S, A any](get GET, set SET) Lens[S, A] { func MakeLensCurried[GET ~func(S) A, SET ~func(A) Endomorphism[S], S, A any](get GET, set SET) Lens[S, A] {
return Lens[S, A]{Get: get, Set: set} return Lens[S, A]{Get: get, Set: set}
} }
// MakeLensRef creates a [Lens] based on a getter and a setter function. The setter passed in does not have to create a shallow // MakeLensRef creates a [Lens] for pointer-based structures.
// copy, the implementation wraps the setter into one that copies the pointer before modifying it
// //
// Such a [Lens] assumes that property A of S always exists // Unlike [MakeLens], the setter does not need to create a copy manually. This function
// automatically wraps the setter to create a shallow copy of the pointed-to value before
// modification, ensuring immutability.
//
// This lens assumes that property A always exists in structure S (i.e., it's not optional).
//
// Type Parameters:
// - GET: Getter function type (*S → A)
// - SET: Setter function type (*S, A → *S)
// - S: Source structure type (will be used as *S)
// - A: Focus/field type
//
// Parameters:
// - get: Function to extract value A from pointer *S
// - set: Function to update value A in pointer *S (copying handled automatically)
//
// Returns:
// - A Lens[*S, A] that can get and set values immutably on pointers
//
// Example:
//
// type Person struct {
// Name string
// Age int
// }
//
// nameLens := lens.MakeLensRef(
// func(p *Person) string { return p.Name },
// func(p *Person, name string) *Person {
// p.Name = name // No manual copy needed
// return p
// },
// )
//
// person := &Person{Name: "Alice", Age: 30}
// updated := nameLens.Set("Bob")(person)
// // person.Name is still "Alice", updated is a new pointer with Name "Bob"
func MakeLensRef[GET ~func(*S) A, SET func(*S, A) *S, S, A any](get GET, set SET) Lens[*S, A] { func MakeLensRef[GET ~func(*S) A, SET func(*S, A) *S, S, A any](get GET, set SET) Lens[*S, A] {
return MakeLens(get, setCopy(set)) return MakeLens(get, setCopy(set))
} }
// MakeLensRefCurried creates a [Lens] based on a getter and a setter function. The setter passed in does not have to create a shallow // MakeLensRefCurried creates a [Lens] for pointer-based structures with a curried setter.
// copy, the implementation wraps the setter into one that copies the pointer before modifying it
// //
// Such a [Lens] assumes that property A of S always exists // This combines the benefits of [MakeLensRef] (automatic copying) with [MakeLensCurried]
// (curried setter for better composition). The setter does not need to create a copy manually;
// this function automatically wraps it to ensure immutability.
//
// This lens assumes that property A always exists in structure S (i.e., it's not optional).
//
// Type Parameters:
// - S: Source structure type (will be used as *S)
// - A: Focus/field type
//
// Parameters:
// - get: Function to extract value A from pointer *S
// - set: Curried function to update value A in pointer *S (copying handled automatically)
//
// Returns:
// - A Lens[*S, A] that can get and set values immutably on pointers
//
// Example:
//
// nameLens := lens.MakeLensRefCurried(
// func(p *Person) string { return p.Name },
// func(name string) func(*Person) *Person {
// return func(p *Person) *Person {
// p.Name = name // No manual copy needed
// return p
// }
// },
// )
func MakeLensRefCurried[S, A any](get func(*S) A, set func(A) Endomorphism[*S]) Lens[*S, A] { func MakeLensRefCurried[S, A any](get func(*S) A, set func(A) Endomorphism[*S]) Lens[*S, A] {
return MakeLensCurried(get, setCopyCurried(set)) return MakeLensCurried(get, setCopyCurried(set))
} }
@@ -79,12 +200,54 @@ func id[GET ~func(S) S, SET ~func(S, S) S, S any](creator func(get GET, set SET)
return creator(F.Identity[S], F.Second[S, S]) return creator(F.Identity[S], F.Second[S, S])
} }
// Id returns a [Lens] implementing the identity operation // Id returns an identity [Lens] that focuses on the entire structure.
//
// The identity lens is useful as a starting point for lens composition or when you need
// a lens that doesn't actually focus on a subpart. Get returns the structure unchanged,
// and Set replaces the entire structure.
//
// Type Parameters:
// - S: The structure type
//
// Returns:
// - A Lens[S, S] where both source and focus are the same type
//
// Example:
//
// type Person struct {
// Name string
// Age int
// }
//
// idLens := lens.Id[Person]()
// person := Person{Name: "Alice", Age: 30}
//
// same := idLens.Get(person) // Returns person unchanged
// replaced := idLens.Set(Person{Name: "Bob", Age: 25})(person)
// // replaced is Person{Name: "Bob", Age: 25}
func Id[S any]() Lens[S, S] { func Id[S any]() Lens[S, S] {
return id(MakeLens[Endomorphism[S], func(S, S) S]) return id(MakeLens[Endomorphism[S], func(S, S) S])
} }
// IdRef returns a [Lens] implementing the identity operation // IdRef returns an identity [Lens] for pointer-based structures.
//
// This is the pointer version of [Id]. It focuses on the entire pointer structure,
// with automatic copying to ensure immutability.
//
// Type Parameters:
// - S: The structure type (will be used as *S)
//
// Returns:
// - A Lens[*S, *S] where both source and focus are pointers to the same type
//
// Example:
//
// idLens := lens.IdRef[Person]()
// person := &Person{Name: "Alice", Age: 30}
//
// same := idLens.Get(person) // Returns person pointer
// replaced := idLens.Set(&Person{Name: "Bob", Age: 25})(person)
// // person.Name is still "Alice", replaced is a new pointer
func IdRef[S any]() Lens[*S, *S] { func IdRef[S any]() Lens[*S, *S] {
return id(MakeLensRef[Endomorphism[*S], func(*S, *S) *S]) return id(MakeLensRef[Endomorphism[*S], func(*S, *S) *S])
} }
@@ -105,111 +268,94 @@ func compose[GET ~func(S) B, SET ~func(S, B) S, S, A, B any](creator func(get GE
} }
} }
// Compose combines two lenses and allows to narrow down the focus to a sub-lens // Compose combines two lenses to focus on a deeply nested field.
//
// Given a lens from S to A and a lens from A to B, Compose creates a lens from S to B.
// This allows you to navigate through nested structures in a composable way.
//
// The composition follows the mathematical property: (sa ∘ ab).Get = ab.Get ∘ sa.Get
//
// Type Parameters:
// - S: Outer structure type
// - A: Intermediate structure type
// - B: Inner focus type
//
// Parameters:
// - ab: Lens from A to B (inner lens)
//
// Returns:
// - A function that takes a Lens[S, A] and returns a Lens[S, B]
//
// Example:
//
// type Address struct {
// Street string
// City string
// }
//
// type Person struct {
// Name string
// Address Address
// }
//
// addressLens := lens.MakeLens(
// func(p Person) Address { return p.Address },
// func(p Person, a Address) Person { p.Address = a; return p },
// )
//
// streetLens := lens.MakeLens(
// func(a Address) string { return a.Street },
// func(a Address, s string) Address { a.Street = s; return a },
// )
//
// // Compose to access street directly from person
// personStreetLens := F.Pipe1(addressLens, lens.Compose[Person](streetLens))
//
// person := Person{Name: "Alice", Address: Address{Street: "Main St"}}
// street := personStreetLens.Get(person) // "Main St"
// updated := personStreetLens.Set("Oak Ave")(person)
func Compose[S, A, B any](ab Lens[A, B]) func(Lens[S, A]) Lens[S, B] { func Compose[S, A, B any](ab Lens[A, B]) func(Lens[S, A]) Lens[S, B] {
return compose(MakeLens[func(S) B, func(S, B) S], ab) return compose(MakeLens[func(S) B, func(S, B) S], ab)
} }
// ComposeOption combines a `Lens` that returns an optional value with a `Lens` that returns a definite value // ComposeRef combines two lenses for pointer-based structures.
// the getter returns an `Option[B]` because the container `A` could already be an option //
// if the setter is invoked with `Some[B]` then the value of `B` will be set, potentially on a default value of `A` if `A` did not exist // This is the pointer version of [Compose], automatically handling copying to ensure immutability.
// if the setter is invoked with `None[B]` then the container `A` is reset to `None[A]` because this is the only way to remove `B` // It allows you to navigate through nested pointer structures in a composable way.
func ComposeOption[S, B, A any](defaultA A) func(ab Lens[A, B]) func(Lens[S, O.Option[A]]) Lens[S, O.Option[B]] { //
defa := F.Constant(defaultA) // Type Parameters:
return func(ab Lens[A, B]) func(Lens[S, O.Option[A]]) Lens[S, O.Option[B]] { // - S: Outer structure type (will be used as *S)
foldab := O.Fold(O.None[B], F.Flow2(ab.Get, O.Some[B])) // - A: Intermediate structure type
return func(sa Lens[S, O.Option[A]]) Lens[S, O.Option[B]] { // - B: Inner focus type
// set A on S //
seta := F.Flow2( // Parameters:
O.Some[A], // - ab: Lens from A to B (inner lens)
sa.Set, //
) // Returns:
// remove A from S // - A function that takes a Lens[*S, A] and returns a Lens[*S, B]
unseta := F.Nullary2( //
O.None[A], // Example:
sa.Set, //
) // type Address struct {
return MakeLens( // Street string
F.Flow2(sa.Get, foldab), // }
func(s S, ob O.Option[B]) S { //
return F.Pipe2( // type Person struct {
ob, // Name string
O.Fold(unseta, func(b B) Endomorphism[S] { // Address Address
setbona := F.Flow2( // }
ab.Set(b), //
seta, // addressLens := lens.MakeLensRef(
) // func(p *Person) Address { return p.Address },
return F.Pipe2( // func(p *Person, a Address) *Person { p.Address = a; return p },
s, // )
sa.Get, //
O.Fold( // streetLens := lens.MakeLens(
F.Nullary2( // func(a Address) string { return a.Street },
defa, // func(a Address, s string) Address { a.Street = s; return a },
setbona, // )
), //
setbona, // personStreetLens := F.Pipe1(addressLens, lens.ComposeRef[Person](streetLens))
),
)
}),
EM.Ap(s),
)
},
)
}
}
}
// ComposeOptions combines a `Lens` that returns an optional value with a `Lens` that returns another optional value
// the getter returns `None[B]` if either `A` or `B` is `None`
// if the setter is called with `Some[B]` and `A` exists, 'A' is updated with `B`
// if the setter is called with `Some[B]` and `A` does not exist, the default of 'A' is updated with `B`
// if the setter is called with `None[B]` and `A` does not exist this is the identity operation on 'S'
// if the setter is called with `None[B]` and `A` does exist, 'B' is removed from 'A'
func ComposeOptions[S, B, A any](defaultA A) func(ab Lens[A, O.Option[B]]) func(Lens[S, O.Option[A]]) Lens[S, O.Option[B]] {
defa := F.Constant(defaultA)
noops := EM.Identity[S]
noneb := O.None[B]()
return func(ab Lens[A, O.Option[B]]) func(Lens[S, O.Option[A]]) Lens[S, O.Option[B]] {
unsetb := ab.Set(noneb)
return func(sa Lens[S, O.Option[A]]) Lens[S, O.Option[B]] {
// sets an A onto S
seta := F.Flow2(
O.Some[A],
sa.Set,
)
return MakeLensCurried(
F.Flow2(
sa.Get,
O.Chain(ab.Get),
),
func(b O.Option[B]) Endomorphism[S] {
return func(s S) S {
return O.MonadFold(b, func() Endomorphism[S] {
return F.Pipe2(
s,
sa.Get,
O.Fold(noops, F.Flow2(unsetb, seta)),
)
}, func(b B) Endomorphism[S] {
// sets a B onto an A
setb := F.Flow2(
ab.Set(O.Some(b)),
seta,
)
return F.Pipe2(
s,
sa.Get,
O.Fold(F.Nullary2(defa, setb), setb),
)
})(s)
}
},
)
}
}
}
// Compose combines two lenses and allows to narrow down the focus to a sub-lens
func ComposeRef[S, A, B any](ab Lens[A, B]) func(Lens[*S, A]) Lens[*S, B] { func ComposeRef[S, A, B any](ab Lens[A, B]) func(Lens[*S, A]) Lens[*S, B] {
return compose(MakeLensRef[func(*S) B, func(*S, B) *S], ab) return compose(MakeLensRef[func(*S) B, func(*S, B) *S], ab)
} }
@@ -218,101 +364,108 @@ func modify[FCT ~func(A) A, S, A any](f FCT, sa Lens[S, A], s S) S {
return sa.Set(f(sa.Get(s)))(s) return sa.Set(f(sa.Get(s)))(s)
} }
// Modify changes a property of a [Lens] by invoking a transformation function // Modify transforms a value through a lens using a transformation F.
// if the transformed property has not changes, the method returns the original state //
// Instead of setting a specific value, Modify applies a function to the current value.
// This is useful for updates like incrementing a counter, appending to a string, etc.
// If the transformation doesn't change the value, the original structure is returned.
//
// Type Parameters:
// - S: Structure type
// - FCT: Transformation function type (A → A)
// - A: Focus type
//
// Parameters:
// - f: Transformation function to apply to the focused value
//
// Returns:
// - A function that takes a Lens[S, A] and returns an Endomorphism[S]
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// counter := Counter{Value: 5}
//
// // Increment the counter
// incremented := F.Pipe2(
// valueLens,
// lens.Modify[Counter](func(v int) int { return v + 1 }),
// F.Ap(counter),
// )
// // incremented.Value == 6
//
// // Double the counter
// doubled := F.Pipe2(
// valueLens,
// lens.Modify[Counter](func(v int) int { return v * 2 }),
// F.Ap(counter),
// )
// // doubled.Value == 10
func Modify[S any, FCT ~func(A) A, A any](f FCT) func(Lens[S, A]) Endomorphism[S] { func Modify[S any, FCT ~func(A) A, A any](f FCT) func(Lens[S, A]) Endomorphism[S] {
return function.Curry3(modify[FCT, S, A])(f) return F.Curry3(modify[FCT, S, A])(f)
} }
// IMap transforms the focus type of a lens using an isomorphism.
//
// An isomorphism is a pair of functions (A → B, B → A) that are inverses of each other.
// IMap allows you to work with a lens in a different but equivalent type. This is useful
// for unit conversions, encoding/decoding, or any bidirectional transformation.
//
// Type Parameters:
// - E: Structure type
// - AB: Forward transformation function type (A → B)
// - BA: Backward transformation function type (B → A)
// - A: Original focus type
// - B: Transformed focus type
//
// Parameters:
// - ab: Forward transformation (A → B)
// - ba: Backward transformation (B → A)
//
// Returns:
// - A function that takes a Lens[E, A] and returns a Lens[E, B]
//
// Example:
//
// type Celsius float64
// type Fahrenheit float64
//
// celsiusToFahrenheit := func(c Celsius) Fahrenheit {
// return Fahrenheit(c*9/5 + 32)
// }
//
// fahrenheitToCelsius := func(f Fahrenheit) Celsius {
// return Celsius((f - 32) * 5 / 9)
// }
//
// type Weather struct {
// Temperature Celsius
// }
//
// tempCelsiusLens := lens.MakeLens(
// func(w Weather) Celsius { return w.Temperature },
// func(w Weather, t Celsius) Weather { w.Temperature = t; return w },
// )
//
// // Create a lens that works with Fahrenheit
// tempFahrenheitLens := F.Pipe1(
// tempCelsiusLens,
// lens.IMap[Weather](celsiusToFahrenheit, fahrenheitToCelsius),
// )
//
// weather := Weather{Temperature: 20} // 20°C
// tempF := tempFahrenheitLens.Get(weather) // 68°F
// updated := tempFahrenheitLens.Set(86)(weather) // Set to 86°F (30°C)
func IMap[E any, AB ~func(A) B, BA ~func(B) A, A, B any](ab AB, ba BA) func(Lens[E, A]) Lens[E, B] { func IMap[E any, AB ~func(A) B, BA ~func(B) A, A, B any](ab AB, ba BA) func(Lens[E, A]) Lens[E, B] {
return func(ea Lens[E, A]) Lens[E, B] { return func(ea Lens[E, A]) Lens[E, B] {
return Lens[E, B]{Get: F.Flow2(ea.Get, ab), Set: F.Flow2(ba, ea.Set)} return Lens[E, B]{Get: F.Flow2(ea.Get, ab), Set: F.Flow2(ba, ea.Set)}
} }
} }
// fromPredicate returns a `Lens` for a property accessibly as a getter and setter that can be optional
// if the optional value is set then the nil value will be set instead
func fromPredicate[GET ~func(S) O.Option[A], SET ~func(S, O.Option[A]) S, S, A any](creator func(get GET, set SET) Lens[S, O.Option[A]], pred func(A) bool, nilValue A) func(sa Lens[S, A]) Lens[S, O.Option[A]] {
fromPred := O.FromPredicate(pred)
return func(sa Lens[S, A]) Lens[S, O.Option[A]] {
fold := O.Fold(F.Bind1of1(sa.Set)(nilValue), sa.Set)
return creator(F.Flow2(sa.Get, fromPred), func(s S, a O.Option[A]) S {
return F.Pipe2(
a,
fold,
EM.Ap(s),
)
})
}
}
// FromPredicate returns a `Lens` for a property accessibly as a getter and setter that can be optional
// if the optional value is set then the nil value will be set instead
func FromPredicate[S, A any](pred func(A) bool, nilValue A) func(sa Lens[S, A]) Lens[S, O.Option[A]] {
return fromPredicate(MakeLens[func(S) O.Option[A], func(S, O.Option[A]) S], pred, nilValue)
}
// FromPredicateRef returns a `Lens` for a property accessibly as a getter and setter that can be optional
// if the optional value is set then the nil value will be set instead
func FromPredicateRef[S, A any](pred func(A) bool, nilValue A) func(sa Lens[*S, A]) Lens[*S, O.Option[A]] {
return fromPredicate(MakeLensRef[func(*S) O.Option[A], func(*S, O.Option[A]) *S], pred, nilValue)
}
// FromPredicate returns a `Lens` for a property accessibly as a getter and setter that can be optional
// if the optional value is set then the `nil` value will be set instead
func FromNillable[S, A any](sa Lens[S, *A]) Lens[S, O.Option[*A]] {
return FromPredicate[S](F.IsNonNil[A], nil)(sa)
}
// FromNillableRef returns a `Lens` for a property accessibly as a getter and setter that can be optional
// if the optional value is set then the `nil` value will be set instead
func FromNillableRef[S, A any](sa Lens[*S, *A]) Lens[*S, O.Option[*A]] {
return FromPredicateRef[S](F.IsNonNil[A], nil)(sa)
}
// fromNullableProp returns a `Lens` from a property that may be optional. The getter returns a default value for these items
func fromNullableProp[GET ~func(S) A, SET ~func(S, A) S, S, A any](creator func(get GET, set SET) Lens[S, A], isNullable func(A) O.Option[A], defaultValue A) func(sa Lens[S, A]) Lens[S, A] {
return func(sa Lens[S, A]) Lens[S, A] {
return creator(F.Flow3(
sa.Get,
isNullable,
O.GetOrElse(F.Constant(defaultValue)),
), func(s S, a A) S {
return sa.Set(a)(s)
},
)
}
}
// FromNullableProp returns a `Lens` from a property that may be optional. The getter returns a default value for these items
func FromNullableProp[S, A any](isNullable func(A) O.Option[A], defaultValue A) func(sa Lens[S, A]) Lens[S, A] {
return fromNullableProp(MakeLens[func(S) A, func(S, A) S], isNullable, defaultValue)
}
// FromNullablePropRef returns a `Lens` from a property that may be optional. The getter returns a default value for these items
func FromNullablePropRef[S, A any](isNullable func(A) O.Option[A], defaultValue A) func(sa Lens[*S, A]) Lens[*S, A] {
return fromNullableProp(MakeLensRef[func(*S) A, func(*S, A) *S], isNullable, defaultValue)
}
// fromFromOption returns a `Lens` from an option property. The getter returns a default value the setter will always set the some option
func fromOption[GET ~func(S) A, SET ~func(S, A) S, S, A any](creator func(get GET, set SET) Lens[S, A], defaultValue A) func(sa Lens[S, O.Option[A]]) Lens[S, A] {
return func(sa Lens[S, O.Option[A]]) Lens[S, A] {
return creator(F.Flow2(
sa.Get,
O.GetOrElse(F.Constant(defaultValue)),
), func(s S, a A) S {
return sa.Set(O.Some(a))(s)
},
)
}
}
// FromFromOption returns a `Lens` from an option property. The getter returns a default value the setter will always set the some option
func FromOption[S, A any](defaultValue A) func(sa Lens[S, O.Option[A]]) Lens[S, A] {
return fromOption(MakeLens[func(S) A, func(S, A) S], defaultValue)
}
// FromFromOptionRef returns a `Lens` from an option property. The getter returns a default value the setter will always set the some option
func FromOptionRef[S, A any](defaultValue A) func(sa Lens[*S, O.Option[A]]) Lens[*S, A] {
return fromOption(MakeLensRef[func(*S) A, func(*S, A) *S], defaultValue)
}

View File

@@ -19,7 +19,6 @@ import (
"testing" "testing"
F "github.com/IBM/fp-go/v2/function" F "github.com/IBM/fp-go/v2/function"
O "github.com/IBM/fp-go/v2/option"
"github.com/stretchr/testify/assert" "github.com/stretchr/testify/assert"
) )
@@ -172,83 +171,6 @@ func TestPassByValue(t *testing.T) {
assert.Equal(t, "value2", s2.name) assert.Equal(t, "value2", s2.name)
} }
func TestFromNullableProp(t *testing.T) {
// default inner object
defaultInner := &Inner{
Value: 0,
Foo: "foo",
}
// access to the value
value := MakeLensRef((*Inner).GetValue, (*Inner).SetValue)
// access to inner
inner := FromNullableProp[Outer](O.FromNillable[Inner], defaultInner)(MakeLens(Outer.GetInner, Outer.SetInner))
// compose
lens := F.Pipe1(
inner,
Compose[Outer](value),
)
outer1 := Outer{inner: &Inner{Value: 1, Foo: "a"}}
// the checks
assert.Equal(t, Outer{inner: &Inner{Value: 1, Foo: "foo"}}, lens.Set(1)(Outer{}))
assert.Equal(t, 0, lens.Get(Outer{}))
assert.Equal(t, Outer{inner: &Inner{Value: 1, Foo: "foo"}}, lens.Set(1)(Outer{inner: &Inner{Value: 2, Foo: "foo"}}))
assert.Equal(t, 1, lens.Get(Outer{inner: &Inner{Value: 1, Foo: "foo"}}))
assert.Equal(t, outer1, Modify[Outer](F.Identity[int])(lens)(outer1))
}
func TestComposeOption(t *testing.T) {
// default inner object
defaultInner := &Inner{
Value: 0,
Foo: "foo",
}
// access to the value
value := MakeLensRef((*Inner).GetValue, (*Inner).SetValue)
// access to inner
inner := FromNillable(MakeLens(Outer.GetInner, Outer.SetInner))
// compose lenses
lens := F.Pipe1(
inner,
ComposeOption[Outer, int](defaultInner)(value),
)
outer1 := Outer{inner: &Inner{Value: 1, Foo: "a"}}
// the checks
assert.Equal(t, Outer{inner: &Inner{Value: 1, Foo: "foo"}}, lens.Set(O.Some(1))(Outer{}))
assert.Equal(t, O.None[int](), lens.Get(Outer{}))
assert.Equal(t, Outer{inner: &Inner{Value: 1, Foo: "foo"}}, lens.Set(O.Some(1))(Outer{inner: &Inner{Value: 2, Foo: "foo"}}))
assert.Equal(t, O.Some(1), lens.Get(Outer{inner: &Inner{Value: 1, Foo: "foo"}}))
assert.Equal(t, outer1, Modify[Outer](F.Identity[O.Option[int]])(lens)(outer1))
}
func TestComposeOptions(t *testing.T) {
// default inner object
defaultValue1 := 1
defaultFoo1 := "foo1"
defaultInner := &InnerOpt{
Value: &defaultValue1,
Foo: &defaultFoo1,
}
// access to the value
value := FromNillable(MakeLensRef((*InnerOpt).GetValue, (*InnerOpt).SetValue))
// access to inner
inner := FromNillable(MakeLens(OuterOpt.GetInnerOpt, OuterOpt.SetInnerOpt))
// compose lenses
lens := F.Pipe1(
inner,
ComposeOptions[OuterOpt, *int](defaultInner)(value),
)
// additional settings
defaultValue2 := 2
defaultFoo2 := "foo2"
outer1 := OuterOpt{inner: &InnerOpt{Value: &defaultValue2, Foo: &defaultFoo2}}
// the checks
assert.Equal(t, OuterOpt{inner: &InnerOpt{Value: &defaultValue1, Foo: &defaultFoo1}}, lens.Set(O.Some(&defaultValue1))(OuterOpt{}))
assert.Equal(t, O.None[*int](), lens.Get(OuterOpt{}))
assert.Equal(t, OuterOpt{inner: &InnerOpt{Value: &defaultValue1, Foo: &defaultFoo2}}, lens.Set(O.Some(&defaultValue1))(OuterOpt{inner: &InnerOpt{Value: &defaultValue2, Foo: &defaultFoo2}}))
assert.Equal(t, O.Some(&defaultValue1), lens.Get(OuterOpt{inner: &InnerOpt{Value: &defaultValue1, Foo: &defaultFoo1}}))
assert.Equal(t, outer1, Modify[OuterOpt](F.Identity[O.Option[*int]])(lens)(outer1))
}
func TestIdRef(t *testing.T) { func TestIdRef(t *testing.T) {
idLens := IdRef[Street]() idLens := IdRef[Street]()
street := &Street{num: 1, name: "Main"} street := &Street{num: 1, name: "Main"}
@@ -272,93 +194,6 @@ func TestComposeRef(t *testing.T) {
assert.Equal(t, sampleStreet.name, sampleAddress.street.name) // Original unchanged assert.Equal(t, sampleStreet.name, sampleAddress.street.name) // Original unchanged
} }
func TestFromPredicateRef(t *testing.T) {
type Person struct {
age int
}
ageLens := MakeLensRef(
func(p *Person) int { return p.age },
func(p *Person, age int) *Person {
p.age = age
return p
},
)
adultLens := FromPredicateRef[Person](func(age int) bool { return age >= 18 }, 0)(ageLens)
adult := &Person{age: 25}
assert.Equal(t, O.Some(25), adultLens.Get(adult))
minor := &Person{age: 15}
assert.Equal(t, O.None[int](), adultLens.Get(minor))
}
func TestFromNillableRef(t *testing.T) {
type Config struct {
timeout *int
}
timeoutLens := MakeLensRef(
func(c *Config) *int { return c.timeout },
func(c *Config, t *int) *Config {
c.timeout = t
return c
},
)
optLens := FromNillableRef(timeoutLens)
config := &Config{timeout: nil}
assert.Equal(t, O.None[*int](), optLens.Get(config))
timeout := 30
configWithTimeout := &Config{timeout: &timeout}
assert.True(t, O.IsSome(optLens.Get(configWithTimeout)))
}
func TestFromNullablePropRef(t *testing.T) {
type Config struct {
timeout *int
}
timeoutLens := MakeLensRef(
func(c *Config) *int { return c.timeout },
func(c *Config, t *int) *Config {
c.timeout = t
return c
},
)
defaultTimeout := 30
safeLens := FromNullablePropRef[Config](O.FromNillable[int], &defaultTimeout)(timeoutLens)
config := &Config{timeout: nil}
assert.Equal(t, &defaultTimeout, safeLens.Get(config))
}
func TestFromOptionRef(t *testing.T) {
type Settings struct {
retries O.Option[int]
}
retriesLens := MakeLensRef(
func(s *Settings) O.Option[int] { return s.retries },
func(s *Settings, r O.Option[int]) *Settings {
s.retries = r
return s
},
)
safeLens := FromOptionRef[Settings](3)(retriesLens)
settings := &Settings{retries: O.None[int]()}
assert.Equal(t, 3, safeLens.Get(settings))
settingsWithRetries := &Settings{retries: O.Some(5)}
assert.Equal(t, 5, safeLens.Get(settingsWithRetries))
}
func TestMakeLensCurried(t *testing.T) { func TestMakeLensCurried(t *testing.T) {
nameLens := MakeLensCurried( nameLens := MakeLensCurried(
func(s Street) string { return s.name }, func(s Street) string { return s.name },

View File

@@ -0,0 +1,192 @@
package option
import (
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/optics/lens"
O "github.com/IBM/fp-go/v2/option"
)
// Compose composes two lenses that both return optional values.
//
// This handles the case where both the intermediate structure A and the inner focus B are optional.
// The getter returns None[B] if either A or B is None. The setter behavior is:
// - Set(Some[B]) when A exists: Updates B in A
// - Set(Some[B]) when A doesn't exist: Creates A with defaultA and sets B
// - Set(None[B]) when A doesn't exist: Identity operation (no change)
// - Set(None[B]) when A exists: Removes B from A (sets it to None)
//
// Type Parameters:
// - S: Outer structure type
// - B: Inner focus type (optional)
// - A: Intermediate structure type (optional)
//
// Parameters:
// - defaultA: Default value for A when it doesn't exist but B needs to be set
//
// Returns:
// - A function that takes a LensO[A, B] and returns a function that takes a
// LensO[S, A] and returns a LensO[S, B]
//
// Example:
//
// type Settings struct {
// MaxRetries *int
// }
//
// type Config struct {
// Settings *Settings
// }
//
// settingsLens := lens.FromNillable(lens.MakeLens(
// func(c Config) *Settings { return c.Settings },
// func(c Config, s *Settings) Config { c.Settings = s; return c },
// ))
//
// retriesLens := lens.FromNillable(lens.MakeLensRef(
// func(s *Settings) *int { return s.MaxRetries },
// func(s *Settings, r *int) *Settings { s.MaxRetries = r; return s },
// ))
//
// defaultSettings := &Settings{}
// configRetriesLens := F.Pipe1(settingsLens,
// lens.Compose[Config, *int](defaultSettings)(retriesLens))
func Compose[S, B, A any](defaultA A) func(ab LensO[A, B]) func(LensO[S, A]) LensO[S, B] {
noneb := O.None[B]()
return func(ab LensO[A, B]) func(LensO[S, A]) LensO[S, B] {
abGet := ab.Get
abSetNone := ab.Set(noneb)
return func(sa LensO[S, A]) LensO[S, B] {
saGet := sa.Get
// Pre-compute setter for Some[A]
setSomeA := F.Flow2(O.Some[A], sa.Set)
return lens.MakeLensCurried(
F.Flow2(saGet, O.Chain(abGet)),
func(optB Option[B]) Endomorphism[S] {
return func(s S) S {
optA := saGet(s)
return O.MonadFold(
optB,
// optB is None
func() S {
return O.MonadFold(
optA,
// optA is None - no-op
F.Constant(s),
// optA is Some - unset B in A
func(a A) S {
return setSomeA(abSetNone(a))(s)
},
)
},
// optB is Some
func(b B) S {
setB := ab.Set(O.Some(b))
return O.MonadFold(
optA,
// optA is None - create with defaultA
func() S {
return setSomeA(setB(defaultA))(s)
},
// optA is Some - update B in A
func(a A) S {
return setSomeA(setB(a))(s)
},
)
},
)
}
},
)
}
}
}
// ComposeOption composes a lens returning an optional value with a lens returning a definite value.
//
// This is useful when you have an optional intermediate structure and want to focus on a field
// within it. The getter returns Option[B] because the container A might not exist. The setter
// behavior depends on the input:
// - Set(Some[B]): Updates B in A, creating A with defaultA if it doesn't exist
// - Set(None[B]): Removes A entirely (sets it to None[A])
//
// Type Parameters:
// - S: Outer structure type
// - B: Inner focus type (definite value)
// - A: Intermediate structure type (optional)
//
// Parameters:
// - defaultA: Default value for A when it doesn't exist but B needs to be set
//
// Returns:
// - A function that takes a Lens[A, B] and returns a function that takes a
// LensO[S, A] and returns a LensO[S, B]
//
// Example:
//
// type Database struct {
// Host string
// Port int
// }
//
// type Config struct {
// Database *Database
// }
//
// dbLens := lens.FromNillable(lens.MakeLens(
// func(c Config) *Database { return c.Database },
// func(c Config, db *Database) Config { c.Database = db; return c },
// ))
//
// portLens := lens.MakeLensRef(
// func(db *Database) int { return db.Port },
// func(db *Database, port int) *Database { db.Port = port; return db },
// )
//
// defaultDB := &Database{Host: "localhost", Port: 5432}
// configPortLens := F.Pipe1(dbLens, lens.ComposeOption[Config, int](defaultDB)(portLens))
//
// config := Config{Database: nil}
// port := configPortLens.Get(config) // None[int]
// updated := configPortLens.Set(O.Some(3306))(config)
// // updated.Database.Port == 3306, Host == "localhost" (from default)
func ComposeOption[S, B, A any](defaultA A) func(ab Lens[A, B]) func(LensO[S, A]) LensO[S, B] {
return func(ab Lens[A, B]) func(LensO[S, A]) LensO[S, B] {
abGet := ab.Get
abSet := ab.Set
return func(sa LensO[S, A]) LensO[S, B] {
saGet := sa.Get
saSet := sa.Set
// Pre-compute setters
setNoneA := saSet(O.None[A]())
setSomeA := func(a A) Endomorphism[S] {
return saSet(O.Some(a))
}
return lens.MakeLens(
func(s S) Option[B] {
return O.Map(abGet)(saGet(s))
},
func(s S, optB Option[B]) S {
return O.Fold(
// optB is None - remove A entirely
F.Constant(setNoneA(s)),
// optB is Some - set B
func(b B) S {
optA := saGet(s)
return O.Fold(
// optA is None - create with defaultA
func() S {
return setSomeA(abSet(b)(defaultA))(s)
},
// optA is Some - update B in A
func(a A) S {
return setSomeA(abSet(b)(a))(s)
},
)(optA)
},
)(optB)
},
)
}
}
}

View File

@@ -0,0 +1,31 @@
mode: count
github.com/IBM/fp-go/v2/optics/lens/option/compose.go:55.97,59.60 4 3
github.com/IBM/fp-go/v2/optics/lens/option/compose.go:59.60,61.43 2 3
github.com/IBM/fp-go/v2/optics/lens/option/compose.go:61.43,72.39 2 3
github.com/IBM/fp-go/v2/optics/lens/option/compose.go:72.39,73.25 1 13
github.com/IBM/fp-go/v2/optics/lens/option/compose.go:73.25,74.52 1 13
github.com/IBM/fp-go/v2/optics/lens/option/compose.go:74.52,80.8 1 6
github.com/IBM/fp-go/v2/optics/lens/option/compose.go:80.36,91.8 2 7
github.com/IBM/fp-go/v2/optics/lens/option/compose.go:147.95,149.59 2 3
github.com/IBM/fp-go/v2/optics/lens/option/compose.go:149.59,151.43 2 3
github.com/IBM/fp-go/v2/optics/lens/option/compose.go:151.43,164.31 3 3
github.com/IBM/fp-go/v2/optics/lens/option/compose.go:164.31,167.48 1 12
github.com/IBM/fp-go/v2/optics/lens/option/compose.go:167.48,183.8 2 7
github.com/IBM/fp-go/v2/optics/lens/option/from.go:12.188,14.41 2 15
github.com/IBM/fp-go/v2/optics/lens/option/from.go:14.41,16.70 2 15
github.com/IBM/fp-go/v2/optics/lens/option/from.go:16.70,22.4 1 60
github.com/IBM/fp-go/v2/optics/lens/option/from.go:28.93,30.2 1 12
github.com/IBM/fp-go/v2/optics/lens/option/from.go:34.105,36.2 1 3
github.com/IBM/fp-go/v2/optics/lens/option/from.go:40.65,42.2 1 10
github.com/IBM/fp-go/v2/optics/lens/option/from.go:46.70,48.2 1 2
github.com/IBM/fp-go/v2/optics/lens/option/from.go:51.188,52.40 1 3
github.com/IBM/fp-go/v2/optics/lens/option/from.go:52.40,57.23 1 3
github.com/IBM/fp-go/v2/optics/lens/option/from.go:57.23,59.4 1 4
github.com/IBM/fp-go/v2/optics/lens/option/from.go:65.110,67.2 1 2
github.com/IBM/fp-go/v2/optics/lens/option/from.go:70.115,72.2 1 1
github.com/IBM/fp-go/v2/optics/lens/option/from.go:75.153,76.41 1 2
github.com/IBM/fp-go/v2/optics/lens/option/from.go:76.41,80.23 1 2
github.com/IBM/fp-go/v2/optics/lens/option/from.go:80.23,82.4 1 2
github.com/IBM/fp-go/v2/optics/lens/option/from.go:88.75,90.2 1 1
github.com/IBM/fp-go/v2/optics/lens/option/from.go:107.87,109.2 1 1
github.com/IBM/fp-go/v2/optics/lens/option/option.go:63.67,65.2 1 1

View File

@@ -0,0 +1,138 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package option provides utilities for working with lenses that focus on optional values.
//
// This package extends the lens optics pattern to handle Option types, enabling safe
// manipulation of potentially absent values in nested data structures. It provides
// functions for creating, composing, and transforming lenses that work with optional
// fields.
//
// # Core Concepts
//
// A LensO[S, A] is a Lens[S, Option[A]] - a lens that focuses on an optional value A
// within a structure S. This is particularly useful when dealing with nullable pointers,
// optional fields, or values that may not always be present.
//
// # Key Functions
//
// Creating Lenses from Optional Values:
// - FromNillable: Creates a lens from a nullable pointer field
// - FromNillableRef: Pointer-based version of FromNillable
// - FromPredicate: Creates a lens based on a predicate function
// - FromPredicateRef: Pointer-based version of FromPredicate
// - FromOption: Converts an optional lens to a definite lens with a default value
// - FromOptionRef: Pointer-based version of FromOption
// - FromNullableProp: Creates a lens with a default value for nullable properties
// - FromNullablePropRef: Pointer-based version of FromNullableProp
//
// Composing Lenses:
// - ComposeOption: Composes a lens returning Option[A] with a lens returning B
// - ComposeOptions: Composes two lenses that both return optional values
//
// Conversions:
// - AsTraversal: Converts a lens to a traversal for use with traversal operations
//
// # Usage Examples
//
// Working with nullable pointers:
//
// type Config struct {
// Database *DatabaseConfig
// }
//
// type DatabaseConfig struct {
// Host string
// Port int
// }
//
// // Create a lens for the optional database config
// dbLens := lens.FromNillable(lens.MakeLens(
// func(c Config) *DatabaseConfig { return c.Database },
// func(c Config, db *DatabaseConfig) Config { c.Database = db; return c },
// ))
//
// // Access the optional value
// config := Config{Database: nil}
// dbOpt := dbLens.Get(config) // Returns None[*DatabaseConfig]
//
// // Set a value
// newDB := &DatabaseConfig{Host: "localhost", Port: 5432}
// updated := dbLens.Set(O.Some(newDB))(config)
//
// Composing optional lenses:
//
// // Lens to access port through optional database
// portLens := lens.MakeLensRef(
// func(db *DatabaseConfig) int { return db.Port },
// func(db *DatabaseConfig, port int) *DatabaseConfig { db.Port = port; return db },
// )
//
// defaultDB := &DatabaseConfig{Host: "localhost", Port: 5432}
// configPortLens := F.Pipe1(dbLens,
// lens.ComposeOption[Config, int](defaultDB)(portLens))
//
// // Get returns None if database is not set
// port := configPortLens.Get(config) // None[int]
//
// // Set creates the database with default values if needed
// withPort := configPortLens.Set(O.Some(3306))(config)
// // withPort.Database.Port == 3306, Host == "localhost"
//
// Working with predicates:
//
// type Person struct {
// Age int
// }
//
// ageLens := lens.MakeLensRef(
// func(p *Person) int { return p.Age },
// func(p *Person, age int) *Person { p.Age = age; return p },
// )
//
// // Only consider adults (age >= 18)
// adultLens := lens.FromPredicateRef[Person](
// func(age int) bool { return age >= 18 },
// 0, // nil value for non-adults
// )(ageLens)
//
// adult := &Person{Age: 25}
// adultLens.Get(adult) // Some(25)
//
// minor := &Person{Age: 15}
// adultLens.Get(minor) // None[int]
//
// # Design Patterns
//
// The package follows functional programming principles:
// - Immutability: All operations return new values rather than modifying in place
// - Composition: Lenses can be composed to access deeply nested optional values
// - Type Safety: The type system ensures correct usage at compile time
// - Lawful: All lenses satisfy the lens laws (get-put, put-get, put-put)
//
// # Performance Considerations
//
// Lens operations are generally efficient, but composing many lenses can create
// function call overhead. For performance-critical code, consider:
// - Caching composed lenses rather than recreating them
// - Using direct field access for simple cases
// - Profiling to identify bottlenecks
//
// # Related Packages
//
// - github.com/IBM/fp-go/v2/optics/lens: Core lens functionality
// - github.com/IBM/fp-go/v2/option: Option type and operations
// - github.com/IBM/fp-go/v2/optics/traversal/option: Traversals for optional values
package option

View File

@@ -0,0 +1,109 @@
package option
import (
EM "github.com/IBM/fp-go/v2/endomorphism"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/optics/lens"
O "github.com/IBM/fp-go/v2/option"
)
// fromPredicate returns a `Lens` for a property accessibly as a getter and setter that can be optional
// if the optional value is set then the nil value will be set instead
func fromPredicate[GET ~func(S) Option[A], SET ~func(S, Option[A]) S, S, A any](creator func(get GET, set SET) LensO[S, A], pred func(A) bool, nilValue A) func(sa Lens[S, A]) LensO[S, A] {
fromPred := O.FromPredicate(pred)
return func(sa Lens[S, A]) LensO[S, A] {
fold := O.Fold(F.Bind1of1(sa.Set)(nilValue), sa.Set)
return creator(F.Flow2(sa.Get, fromPred), func(s S, a Option[A]) S {
return F.Pipe2(
a,
fold,
EM.Ap(s),
)
})
}
}
// FromPredicate returns a `Lens` for a property accessibly as a getter and setter that can be optional
// if the optional value is set then the nil value will be set instead
func FromPredicate[S, A any](pred func(A) bool, nilValue A) func(sa Lens[S, A]) LensO[S, A] {
return fromPredicate(lens.MakeLens[func(S) Option[A], func(S, Option[A]) S], pred, nilValue)
}
// FromPredicateRef returns a `Lens` for a property accessibly as a getter and setter that can be optional
// if the optional value is set then the nil value will be set instead
func FromPredicateRef[S, A any](pred func(A) bool, nilValue A) func(sa Lens[*S, A]) Lens[*S, Option[A]] {
return fromPredicate(lens.MakeLensRef[func(*S) Option[A], func(*S, Option[A]) *S], pred, nilValue)
}
// FromPredicate returns a `Lens` for a property accessibly as a getter and setter that can be optional
// if the optional value is set then the `nil` value will be set instead
func FromNillable[S, A any](sa Lens[S, *A]) Lens[S, Option[*A]] {
return FromPredicate[S](F.IsNonNil[A], nil)(sa)
}
// FromNillableRef returns a `Lens` for a property accessibly as a getter and setter that can be optional
// if the optional value is set then the `nil` value will be set instead
func FromNillableRef[S, A any](sa Lens[*S, *A]) Lens[*S, Option[*A]] {
return FromPredicateRef[S](F.IsNonNil[A], nil)(sa)
}
// fromNullableProp returns a `Lens` from a property that may be optional. The getter returns a default value for these items
func fromNullableProp[GET ~func(S) A, SET ~func(S, A) S, S, A any](creator func(get GET, set SET) Lens[S, A], isNullable func(A) Option[A], defaultValue A) func(sa Lens[S, A]) Lens[S, A] {
return func(sa Lens[S, A]) Lens[S, A] {
return creator(F.Flow3(
sa.Get,
isNullable,
O.GetOrElse(F.Constant(defaultValue)),
), func(s S, a A) S {
return sa.Set(a)(s)
},
)
}
}
// FromNullableProp returns a `Lens` from a property that may be optional. The getter returns a default value for these items
func FromNullableProp[S, A any](isNullable func(A) Option[A], defaultValue A) func(sa Lens[S, A]) Lens[S, A] {
return fromNullableProp(lens.MakeLens[func(S) A, func(S, A) S], isNullable, defaultValue)
}
// FromNullablePropRef returns a `Lens` from a property that may be optional. The getter returns a default value for these items
func FromNullablePropRef[S, A any](isNullable func(A) Option[A], defaultValue A) func(sa Lens[*S, A]) Lens[*S, A] {
return fromNullableProp(lens.MakeLensRef[func(*S) A, func(*S, A) *S], isNullable, defaultValue)
}
// fromOption returns a `Lens` from an option property. The getter returns a default value the setter will always set the some option
func fromOption[GET ~func(S) A, SET ~func(S, A) S, S, A any](creator func(get GET, set SET) Lens[S, A], defaultValue A) func(sa LensO[S, A]) Lens[S, A] {
return func(sa LensO[S, A]) Lens[S, A] {
return creator(F.Flow2(
sa.Get,
O.GetOrElse(F.Constant(defaultValue)),
), func(s S, a A) S {
return sa.Set(O.Some(a))(s)
},
)
}
}
// FromOption returns a `Lens` from an option property. The getter returns a default value the setter will always set the some option
func FromOption[S, A any](defaultValue A) func(sa LensO[S, A]) Lens[S, A] {
return fromOption(lens.MakeLens[func(S) A, func(S, A) S], defaultValue)
}
// FromOptionRef creates a lens from an Option property with a default value for pointer structures.
//
// This is the pointer version of [FromOption], with automatic copying to ensure immutability.
// The getter returns the value inside Some[A], or the defaultValue if it's None[A].
// The setter always wraps the value in Some[A].
//
// Type Parameters:
// - S: Structure type (will be used as *S)
// - A: Focus type
//
// Parameters:
// - defaultValue: Value to return when the Option is None
//
// Returns:
// - A function that takes a Lens[*S, Option[A]] and returns a Lens[*S, A]
func FromOptionRef[S, A any](defaultValue A) func(sa Lens[*S, Option[A]]) Lens[*S, A] {
return fromOption(lens.MakeLensRef[func(*S) A, func(*S, A) *S], defaultValue)
}

View File

@@ -0,0 +1,759 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package option
import (
"testing"
EQT "github.com/IBM/fp-go/v2/eq/testing"
F "github.com/IBM/fp-go/v2/function"
L "github.com/IBM/fp-go/v2/optics/lens"
O "github.com/IBM/fp-go/v2/option"
"github.com/stretchr/testify/assert"
)
type (
Street struct {
name string
}
Address struct {
street *Street
}
Inner struct {
Value int
Foo string
}
InnerOpt struct {
Value *int
Foo *string
}
Outer struct {
inner *Inner
}
OuterOpt struct {
inner *InnerOpt
}
)
func (outer Outer) GetInner() *Inner {
return outer.inner
}
func (outer Outer) SetInner(inner *Inner) Outer {
outer.inner = inner
return outer
}
func (outer OuterOpt) GetInnerOpt() *InnerOpt {
return outer.inner
}
func (outer OuterOpt) SetInnerOpt(inner *InnerOpt) OuterOpt {
outer.inner = inner
return outer
}
func (inner *Inner) GetValue() int {
return inner.Value
}
func (inner *Inner) SetValue(value int) *Inner {
inner.Value = value
return inner
}
func (inner *InnerOpt) GetValue() *int {
return inner.Value
}
func (inner *InnerOpt) SetValue(value *int) *InnerOpt {
inner.Value = value
return inner
}
func (street *Street) GetName() string {
return street.name
}
func (street *Street) SetName(name string) *Street {
street.name = name
return street
}
func (addr *Address) GetStreet() *Street {
return addr.street
}
func (addr *Address) SetStreet(s *Street) *Address {
addr.street = s
return addr
}
var (
streetLens = L.MakeLensRef((*Street).GetName, (*Street).SetName)
addrLens = L.MakeLensRef((*Address).GetStreet, (*Address).SetStreet)
sampleStreet = Street{name: "Schönaicherstr"}
sampleAddress = Address{street: &sampleStreet}
)
func TestComposeOption(t *testing.T) {
// default inner object
defaultInner := &Inner{
Value: 0,
Foo: "foo",
}
// access to the value
value := L.MakeLensRef((*Inner).GetValue, (*Inner).SetValue)
// access to inner
inner := FromNillable(L.MakeLens(Outer.GetInner, Outer.SetInner))
// compose lenses
lens := F.Pipe1(
inner,
ComposeOption[Outer, int](defaultInner)(value),
)
outer1 := Outer{inner: &Inner{Value: 1, Foo: "a"}}
// the checks
assert.Equal(t, Outer{inner: &Inner{Value: 1, Foo: "foo"}}, lens.Set(O.Some(1))(Outer{}))
assert.Equal(t, O.None[int](), lens.Get(Outer{}))
assert.Equal(t, Outer{inner: &Inner{Value: 1, Foo: "foo"}}, lens.Set(O.Some(1))(Outer{inner: &Inner{Value: 2, Foo: "foo"}}))
assert.Equal(t, O.Some(1), lens.Get(Outer{inner: &Inner{Value: 1, Foo: "foo"}}))
assert.Equal(t, outer1, L.Modify[Outer](F.Identity[Option[int]])(lens)(outer1))
}
func TestComposeOptions(t *testing.T) {
// default inner object
defaultValue1 := 1
defaultFoo1 := "foo1"
defaultInner := &InnerOpt{
Value: &defaultValue1,
Foo: &defaultFoo1,
}
// access to the value
value := FromNillable(L.MakeLensRef((*InnerOpt).GetValue, (*InnerOpt).SetValue))
// access to inner
inner := FromNillable(L.MakeLens(OuterOpt.GetInnerOpt, OuterOpt.SetInnerOpt))
// compose lenses
lens := F.Pipe1(
inner,
Compose[OuterOpt, *int](defaultInner)(value),
)
// additional settings
defaultValue2 := 2
defaultFoo2 := "foo2"
outer1 := OuterOpt{inner: &InnerOpt{Value: &defaultValue2, Foo: &defaultFoo2}}
// the checks
assert.Equal(t, OuterOpt{inner: &InnerOpt{Value: &defaultValue1, Foo: &defaultFoo1}}, lens.Set(O.Some(&defaultValue1))(OuterOpt{}))
assert.Equal(t, O.None[*int](), lens.Get(OuterOpt{}))
assert.Equal(t, OuterOpt{inner: &InnerOpt{Value: &defaultValue1, Foo: &defaultFoo2}}, lens.Set(O.Some(&defaultValue1))(OuterOpt{inner: &InnerOpt{Value: &defaultValue2, Foo: &defaultFoo2}}))
assert.Equal(t, O.Some(&defaultValue1), lens.Get(OuterOpt{inner: &InnerOpt{Value: &defaultValue1, Foo: &defaultFoo1}}))
assert.Equal(t, outer1, L.Modify[OuterOpt](F.Identity[Option[*int]])(lens)(outer1))
}
func TestFromNullableProp(t *testing.T) {
// default inner object
defaultInner := &Inner{
Value: 0,
Foo: "foo",
}
// access to the value
value := L.MakeLensRef((*Inner).GetValue, (*Inner).SetValue)
// access to inner
inner := FromNullableProp[Outer](O.FromNillable[Inner], defaultInner)(L.MakeLens(Outer.GetInner, Outer.SetInner))
// compose
lens := F.Pipe1(
inner,
L.Compose[Outer](value),
)
outer1 := Outer{inner: &Inner{Value: 1, Foo: "a"}}
// the checks
assert.Equal(t, Outer{inner: &Inner{Value: 1, Foo: "foo"}}, lens.Set(1)(Outer{}))
assert.Equal(t, 0, lens.Get(Outer{}))
assert.Equal(t, Outer{inner: &Inner{Value: 1, Foo: "foo"}}, lens.Set(1)(Outer{inner: &Inner{Value: 2, Foo: "foo"}}))
assert.Equal(t, 1, lens.Get(Outer{inner: &Inner{Value: 1, Foo: "foo"}}))
assert.Equal(t, outer1, L.Modify[Outer](F.Identity[int])(lens)(outer1))
}
func TestFromPredicateRef(t *testing.T) {
type Person struct {
age int
}
ageLens := L.MakeLensRef(
func(p *Person) int { return p.age },
func(p *Person, age int) *Person {
p.age = age
return p
},
)
adultLens := FromPredicateRef[Person](func(age int) bool { return age >= 18 }, 0)(ageLens)
adult := &Person{age: 25}
assert.Equal(t, O.Some(25), adultLens.Get(adult))
minor := &Person{age: 15}
assert.Equal(t, O.None[int](), adultLens.Get(minor))
}
func TestFromNillableRef(t *testing.T) {
type Config struct {
timeout *int
}
timeoutLens := L.MakeLensRef(
func(c *Config) *int { return c.timeout },
func(c *Config, t *int) *Config {
c.timeout = t
return c
},
)
optLens := FromNillableRef(timeoutLens)
config := &Config{timeout: nil}
assert.Equal(t, O.None[*int](), optLens.Get(config))
timeout := 30
configWithTimeout := &Config{timeout: &timeout}
assert.True(t, O.IsSome(optLens.Get(configWithTimeout)))
}
func TestFromNullablePropRef(t *testing.T) {
type Config struct {
timeout *int
}
timeoutLens := L.MakeLensRef(
func(c *Config) *int { return c.timeout },
func(c *Config, t *int) *Config {
c.timeout = t
return c
},
)
defaultTimeout := 30
safeLens := FromNullablePropRef[Config](O.FromNillable[int], &defaultTimeout)(timeoutLens)
config := &Config{timeout: nil}
assert.Equal(t, &defaultTimeout, safeLens.Get(config))
}
func TestFromOptionRef(t *testing.T) {
type Settings struct {
retries Option[int]
}
retriesLens := L.MakeLensRef(
func(s *Settings) Option[int] { return s.retries },
func(s *Settings, r Option[int]) *Settings {
s.retries = r
return s
},
)
safeLens := FromOptionRef[Settings](3)(retriesLens)
settings := &Settings{retries: O.None[int]()}
assert.Equal(t, 3, safeLens.Get(settings))
settingsWithRetries := &Settings{retries: O.Some(5)}
assert.Equal(t, 5, safeLens.Get(settingsWithRetries))
}
func TestFromOption(t *testing.T) {
type Config struct {
retries Option[int]
}
retriesLens := L.MakeLens(
func(c Config) Option[int] { return c.retries },
func(c Config, r Option[int]) Config { c.retries = r; return c },
)
defaultRetries := 3
safeLens := FromOption[Config](defaultRetries)(retriesLens)
// Test with None - should return default
config := Config{retries: O.None[int]()}
assert.Equal(t, defaultRetries, safeLens.Get(config))
// Test with Some - should return the value
configWithRetries := Config{retries: O.Some(5)}
assert.Equal(t, 5, safeLens.Get(configWithRetries))
// Test setter - should always set Some
updated := safeLens.Set(10)(config)
assert.Equal(t, O.Some(10), updated.retries)
// Test setter on existing Some - should replace
updated2 := safeLens.Set(7)(configWithRetries)
assert.Equal(t, O.Some(7), updated2.retries)
}
func TestAsTraversal(t *testing.T) {
type Data struct {
value int
}
valueLens := L.MakeLens(
func(d Data) int { return d.value },
func(d Data, v int) Data { d.value = v; return d },
)
// Convert lens to traversal
traversal := AsTraversal[Data, int]()(valueLens)
// Test that traversal is created (basic smoke test)
assert.NotNil(t, traversal)
// The traversal should work with the data
data := Data{value: 42}
// Verify the traversal can be used (it's a function that takes a functor)
// This is a basic smoke test to ensure the conversion works
assert.NotNil(t, data)
assert.Equal(t, 42, valueLens.Get(data))
}
func TestComposeOptionsEdgeCases(t *testing.T) {
// Test setting None when inner doesn't exist
defaultValue1 := 1
defaultFoo1 := "foo1"
defaultInner := &InnerOpt{
Value: &defaultValue1,
Foo: &defaultFoo1,
}
value := FromNillable(L.MakeLensRef((*InnerOpt).GetValue, (*InnerOpt).SetValue))
inner := FromNillable(L.MakeLens(OuterOpt.GetInnerOpt, OuterOpt.SetInnerOpt))
lens := F.Pipe1(
inner,
Compose[OuterOpt, *int](defaultInner)(value),
)
// Setting None when inner doesn't exist should be a no-op
emptyOuter := OuterOpt{}
result := lens.Set(O.None[*int]())(emptyOuter)
assert.Equal(t, O.None[*InnerOpt](), inner.Get(result))
// Setting None when inner exists should unset the value
defaultValue2 := 2
defaultFoo2 := "foo2"
outerWithInner := OuterOpt{inner: &InnerOpt{Value: &defaultValue2, Foo: &defaultFoo2}}
result2 := lens.Set(O.None[*int]())(outerWithInner)
assert.NotNil(t, result2.inner)
assert.Nil(t, result2.inner.Value)
assert.Equal(t, &defaultFoo2, result2.inner.Foo)
}
func TestComposeOptionEdgeCases(t *testing.T) {
defaultInner := &Inner{
Value: 0,
Foo: "foo",
}
value := L.MakeLensRef((*Inner).GetValue, (*Inner).SetValue)
inner := FromNillable(L.MakeLens(Outer.GetInner, Outer.SetInner))
lens := F.Pipe1(
inner,
ComposeOption[Outer, int](defaultInner)(value),
)
// Setting None should remove the inner entirely
outerWithInner := Outer{inner: &Inner{Value: 42, Foo: "bar"}}
result := lens.Set(O.None[int]())(outerWithInner)
assert.Nil(t, result.inner)
// Getting from empty should return None
emptyOuter := Outer{}
assert.Equal(t, O.None[int](), lens.Get(emptyOuter))
}
func TestFromPredicateEdgeCases(t *testing.T) {
type Score struct {
points int
}
pointsLens := L.MakeLens(
func(s Score) int { return s.points },
func(s Score, p int) Score { s.points = p; return s },
)
// Only positive scores are valid
validLens := FromPredicate[Score](func(p int) bool { return p > 0 }, 0)(pointsLens)
// Test with valid score
validScore := Score{points: 100}
assert.Equal(t, O.Some(100), validLens.Get(validScore))
// Test with invalid score (zero)
zeroScore := Score{points: 0}
assert.Equal(t, O.None[int](), validLens.Get(zeroScore))
// Test with invalid score (negative)
negativeScore := Score{points: -10}
assert.Equal(t, O.None[int](), validLens.Get(negativeScore))
// Test setting None sets the nil value
result := validLens.Set(O.None[int]())(validScore)
assert.Equal(t, 0, result.points)
// Test setting Some sets the value
result2 := validLens.Set(O.Some(50))(zeroScore)
assert.Equal(t, 50, result2.points)
}
func TestFromNullablePropEdgeCases(t *testing.T) {
type Container struct {
item *string
}
itemLens := L.MakeLens(
func(c Container) *string { return c.item },
func(c Container, i *string) Container { c.item = i; return c },
)
defaultItem := "default"
safeLens := FromNullableProp[Container](O.FromNillable[string], &defaultItem)(itemLens)
// Test with nil - should return default
emptyContainer := Container{item: nil}
assert.Equal(t, &defaultItem, safeLens.Get(emptyContainer))
// Test with value - should return the value
value := "actual"
containerWithItem := Container{item: &value}
assert.Equal(t, &value, safeLens.Get(containerWithItem))
// Test setter
newValue := "new"
updated := safeLens.Set(&newValue)(emptyContainer)
assert.Equal(t, &newValue, updated.item)
}
// Lens Law Tests for LensO types
func TestFromNillableLensLaws(t *testing.T) {
type Config struct {
timeout *int
}
timeoutLens := L.MakeLens(
func(c Config) *int { return c.timeout },
func(c Config, t *int) Config { c.timeout = t; return c },
)
optLens := FromNillable(timeoutLens)
// Equality predicates
eqInt := EQT.Eq[*int]()
eqOptInt := O.Eq(eqInt)
eqConfig := func(a, b Config) bool {
if a.timeout == nil && b.timeout == nil {
return true
}
if a.timeout == nil || b.timeout == nil {
return false
}
return *a.timeout == *b.timeout
}
// Test structures
timeout30 := 30
timeout60 := 60
configNil := Config{timeout: nil}
config30 := Config{timeout: &timeout30}
// Law 1: get(set(a)(s)) = a
t.Run("GetSet", func(t *testing.T) {
// Setting Some and getting back
result := optLens.Get(optLens.Set(O.Some(&timeout60))(config30))
assert.True(t, eqOptInt.Equals(result, O.Some(&timeout60)))
// Setting None and getting back
result2 := optLens.Get(optLens.Set(O.None[*int]())(config30))
assert.True(t, eqOptInt.Equals(result2, O.None[*int]()))
})
// Law 2: set(get(s))(s) = s
t.Run("SetGet", func(t *testing.T) {
// With Some value
result := optLens.Set(optLens.Get(config30))(config30)
assert.True(t, eqConfig(result, config30))
// With None value
result2 := optLens.Set(optLens.Get(configNil))(configNil)
assert.True(t, eqConfig(result2, configNil))
})
// Law 3: set(a)(set(a)(s)) = set(a)(s)
t.Run("SetSet", func(t *testing.T) {
// Setting Some twice
once := optLens.Set(O.Some(&timeout60))(config30)
twice := optLens.Set(O.Some(&timeout60))(once)
assert.True(t, eqConfig(once, twice))
// Setting None twice
once2 := optLens.Set(O.None[*int]())(config30)
twice2 := optLens.Set(O.None[*int]())(once2)
assert.True(t, eqConfig(once2, twice2))
})
}
func TestFromNillableRefLensLaws(t *testing.T) {
type Settings struct {
maxRetries *int
}
retriesLens := L.MakeLensRef(
func(s *Settings) *int { return s.maxRetries },
func(s *Settings, r *int) *Settings { s.maxRetries = r; return s },
)
optLens := FromNillableRef(retriesLens)
// Equality predicates
eqInt := EQT.Eq[*int]()
eqOptInt := O.Eq(eqInt)
eqSettings := func(a, b *Settings) bool {
if a == nil && b == nil {
return true
}
if a == nil || b == nil {
return false
}
if a.maxRetries == nil && b.maxRetries == nil {
return true
}
if a.maxRetries == nil || b.maxRetries == nil {
return false
}
return *a.maxRetries == *b.maxRetries
}
// Test structures
retries3 := 3
retries5 := 5
settingsNil := &Settings{maxRetries: nil}
settings3 := &Settings{maxRetries: &retries3}
// Law 1: get(set(a)(s)) = a
t.Run("GetSet", func(t *testing.T) {
result := optLens.Get(optLens.Set(O.Some(&retries5))(settings3))
assert.True(t, eqOptInt.Equals(result, O.Some(&retries5)))
result2 := optLens.Get(optLens.Set(O.None[*int]())(settings3))
assert.True(t, eqOptInt.Equals(result2, O.None[*int]()))
})
// Law 2: set(get(s))(s) = s
t.Run("SetGet", func(t *testing.T) {
result := optLens.Set(optLens.Get(settings3))(settings3)
assert.True(t, eqSettings(result, settings3))
result2 := optLens.Set(optLens.Get(settingsNil))(settingsNil)
assert.True(t, eqSettings(result2, settingsNil))
})
// Law 3: set(a)(set(a)(s)) = set(a)(s)
t.Run("SetSet", func(t *testing.T) {
once := optLens.Set(O.Some(&retries5))(settings3)
twice := optLens.Set(O.Some(&retries5))(once)
assert.True(t, eqSettings(once, twice))
once2 := optLens.Set(O.None[*int]())(settings3)
twice2 := optLens.Set(O.None[*int]())(once2)
assert.True(t, eqSettings(once2, twice2))
})
}
func TestComposeOptionLensLaws(t *testing.T) {
defaultInner := &Inner{Value: 0, Foo: "default"}
value := L.MakeLensRef((*Inner).GetValue, (*Inner).SetValue)
inner := FromNillable(L.MakeLens(Outer.GetInner, Outer.SetInner))
lens := F.Pipe1(inner, ComposeOption[Outer, int](defaultInner)(value))
// Equality predicates
eqInt := EQT.Eq[int]()
eqOptInt := O.Eq(eqInt)
eqOuter := func(a, b Outer) bool {
if a.inner == nil && b.inner == nil {
return true
}
if a.inner == nil || b.inner == nil {
return false
}
return a.inner.Value == b.inner.Value && a.inner.Foo == b.inner.Foo
}
// Test structures
outerNil := Outer{inner: nil}
outer42 := Outer{inner: &Inner{Value: 42, Foo: "test"}}
// Law 1: get(set(a)(s)) = a
t.Run("GetSet", func(t *testing.T) {
result := lens.Get(lens.Set(O.Some(100))(outer42))
assert.True(t, eqOptInt.Equals(result, O.Some(100)))
result2 := lens.Get(lens.Set(O.None[int]())(outer42))
assert.True(t, eqOptInt.Equals(result2, O.None[int]()))
})
// Law 2: set(get(s))(s) = s
t.Run("SetGet", func(t *testing.T) {
result := lens.Set(lens.Get(outer42))(outer42)
assert.True(t, eqOuter(result, outer42))
result2 := lens.Set(lens.Get(outerNil))(outerNil)
assert.True(t, eqOuter(result2, outerNil))
})
// Law 3: set(a)(set(a)(s)) = set(a)(s)
t.Run("SetSet", func(t *testing.T) {
once := lens.Set(O.Some(100))(outer42)
twice := lens.Set(O.Some(100))(once)
assert.True(t, eqOuter(once, twice))
once2 := lens.Set(O.None[int]())(outer42)
twice2 := lens.Set(O.None[int]())(once2)
assert.True(t, eqOuter(once2, twice2))
})
}
func TestComposeOptionsLensLaws(t *testing.T) {
defaultValue := 1
defaultFoo := "default"
defaultInner := &InnerOpt{Value: &defaultValue, Foo: &defaultFoo}
value := FromNillable(L.MakeLensRef((*InnerOpt).GetValue, (*InnerOpt).SetValue))
inner := FromNillable(L.MakeLens(OuterOpt.GetInnerOpt, OuterOpt.SetInnerOpt))
lens := F.Pipe1(inner, Compose[OuterOpt, *int](defaultInner)(value))
// Equality predicates
eqIntPtr := EQT.Eq[*int]()
eqOptIntPtr := O.Eq(eqIntPtr)
eqOuterOpt := func(a, b OuterOpt) bool {
if a.inner == nil && b.inner == nil {
return true
}
if a.inner == nil || b.inner == nil {
return false
}
aVal := a.inner.Value
bVal := b.inner.Value
if aVal == nil && bVal == nil {
return true
}
if aVal == nil || bVal == nil {
return false
}
return *aVal == *bVal
}
// Test structures
val42 := 42
val100 := 100
outerNil := OuterOpt{inner: nil}
outer42 := OuterOpt{inner: &InnerOpt{Value: &val42, Foo: &defaultFoo}}
// Law 1: get(set(a)(s)) = a
t.Run("GetSet", func(t *testing.T) {
result := lens.Get(lens.Set(O.Some(&val100))(outer42))
assert.True(t, eqOptIntPtr.Equals(result, O.Some(&val100)))
result2 := lens.Get(lens.Set(O.None[*int]())(outer42))
assert.True(t, eqOptIntPtr.Equals(result2, O.None[*int]()))
})
// Law 2: set(get(s))(s) = s
t.Run("SetGet", func(t *testing.T) {
result := lens.Set(lens.Get(outer42))(outer42)
assert.True(t, eqOuterOpt(result, outer42))
result2 := lens.Set(lens.Get(outerNil))(outerNil)
assert.True(t, eqOuterOpt(result2, outerNil))
})
// Law 3: set(a)(set(a)(s)) = set(a)(s)
t.Run("SetSet", func(t *testing.T) {
once := lens.Set(O.Some(&val100))(outer42)
twice := lens.Set(O.Some(&val100))(once)
assert.True(t, eqOuterOpt(once, twice))
once2 := lens.Set(O.None[*int]())(outer42)
twice2 := lens.Set(O.None[*int]())(once2)
assert.True(t, eqOuterOpt(once2, twice2))
})
}
func TestFromPredicateLensLaws(t *testing.T) {
type Score struct {
points int
}
pointsLens := L.MakeLens(
func(s Score) int { return s.points },
func(s Score, p int) Score { s.points = p; return s },
)
// Only positive scores are valid
validLens := FromPredicate[Score](func(p int) bool { return p > 0 }, 0)(pointsLens)
// Equality predicates
eqInt := EQT.Eq[int]()
eqOptInt := O.Eq(eqInt)
eqScore := func(a, b Score) bool { return a.points == b.points }
// Test structures
scoreZero := Score{points: 0}
score100 := Score{points: 100}
// Law 1: get(set(a)(s)) = a
t.Run("GetSet", func(t *testing.T) {
result := validLens.Get(validLens.Set(O.Some(50))(score100))
assert.True(t, eqOptInt.Equals(result, O.Some(50)))
result2 := validLens.Get(validLens.Set(O.None[int]())(score100))
assert.True(t, eqOptInt.Equals(result2, O.None[int]()))
})
// Law 2: set(get(s))(s) = s
t.Run("SetGet", func(t *testing.T) {
result := validLens.Set(validLens.Get(score100))(score100)
assert.True(t, eqScore(result, score100))
result2 := validLens.Set(validLens.Get(scoreZero))(scoreZero)
assert.True(t, eqScore(result2, scoreZero))
})
// Law 3: set(a)(set(a)(s)) = set(a)(s)
t.Run("SetSet", func(t *testing.T) {
once := validLens.Set(O.Some(75))(score100)
twice := validLens.Set(O.Some(75))(once)
assert.True(t, eqScore(once, twice))
once2 := validLens.Set(O.None[int]())(score100)
twice2 := validLens.Set(O.None[int]())(once2)
assert.True(t, eqScore(once2, twice2))
})
}

View File

@@ -22,6 +22,44 @@ import (
O "github.com/IBM/fp-go/v2/option" O "github.com/IBM/fp-go/v2/option"
) )
// AsTraversal converts a Lens[S, A] to a Traversal[S, A] for optional values.
//
// A traversal is a generalization of a lens that can focus on zero or more values.
// This function converts a lens (which focuses on exactly one value) into a traversal,
// allowing it to be used with traversal operations like mapping over multiple values.
//
// This is particularly useful when you want to:
// - Use lens operations in a traversal context
// - Compose lenses with traversals
// - Apply operations that work on collections of optional values
//
// The conversion uses the Option monad's map operation to handle the optional nature
// of the values being traversed.
//
// Type Parameters:
// - S: The structure type containing the field
// - A: The type of the field being focused on
//
// Returns:
// - A function that takes a Lens[S, A] and returns a Traversal[S, A]
//
// Example:
//
// type Config struct {
// Timeout Option[int]
// }
//
// timeoutLens := lens.MakeLens(
// func(c Config) Option[int] { return c.Timeout },
// func(c Config, t Option[int]) Config { c.Timeout = t; return c },
// )
//
// // Convert to traversal for use with traversal operations
// timeoutTraversal := lens.AsTraversal[Config, int]()(timeoutLens)
//
// // Now can use traversal operations
// configs := []Config{{Timeout: O.Some(30)}, {Timeout: O.None[int]()}}
// // Apply operations across all configs using the traversal
func AsTraversal[S, A any]() func(L.Lens[S, A]) T.Traversal[S, A] { func AsTraversal[S, A any]() func(L.Lens[S, A]) T.Traversal[S, A] {
return LG.AsTraversal[T.Traversal[S, A]](O.MonadMap[A, S]) return LG.AsTraversal[T.Traversal[S, A]](O.MonadMap[A, S])
} }

View File

@@ -0,0 +1,267 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package testing
import (
"testing"
EQT "github.com/IBM/fp-go/v2/eq/testing"
F "github.com/IBM/fp-go/v2/function"
I "github.com/IBM/fp-go/v2/identity"
L "github.com/IBM/fp-go/v2/optics/lens"
LI "github.com/IBM/fp-go/v2/optics/lens/iso"
LO "github.com/IBM/fp-go/v2/optics/lens/option"
LT "github.com/IBM/fp-go/v2/optics/lens/testing"
O "github.com/IBM/fp-go/v2/option"
"github.com/stretchr/testify/assert"
)
type (
Street struct {
num int
name string
}
Address struct {
city string
street *Street
}
Inner struct {
Value int
Foo string
}
InnerOpt struct {
Value *int
Foo *string
}
Outer struct {
inner *Inner
}
OuterOpt struct {
inner *InnerOpt
}
)
func (outer *OuterOpt) GetInner() *InnerOpt {
return outer.inner
}
func (outer *OuterOpt) SetInner(inner *InnerOpt) *OuterOpt {
outer.inner = inner
return outer
}
func (inner *InnerOpt) GetValue() *int {
return inner.Value
}
func (inner *InnerOpt) SetValue(value *int) *InnerOpt {
inner.Value = value
return inner
}
func (outer *Outer) GetInner() *Inner {
return outer.inner
}
func (outer *Outer) SetInner(inner *Inner) *Outer {
outer.inner = inner
return outer
}
func (inner *Inner) GetValue() int {
return inner.Value
}
func (inner *Inner) SetValue(value int) *Inner {
inner.Value = value
return inner
}
func (street *Street) GetName() string {
return street.name
}
func (street *Street) SetName(name string) *Street {
street.name = name
return street
}
func (addr *Address) GetStreet() *Street {
return addr.street
}
func (addr *Address) SetStreet(s *Street) *Address {
addr.street = s
return addr
}
var (
streetLens = L.MakeLensRef((*Street).GetName, (*Street).SetName)
addrLens = L.MakeLensRef((*Address).GetStreet, (*Address).SetStreet)
outerLens = LO.FromNillableRef(L.MakeLensRef((*Outer).GetInner, (*Outer).SetInner))
valueLens = L.MakeLensRef((*Inner).GetValue, (*Inner).SetValue)
outerOptLens = LO.FromNillableRef(L.MakeLensRef((*OuterOpt).GetInner, (*OuterOpt).SetInner))
valueOptLens = L.MakeLensRef((*InnerOpt).GetValue, (*InnerOpt).SetValue)
sampleStreet = Street{num: 220, name: "Schönaicherstr"}
sampleAddress = Address{city: "Böblingen", street: &sampleStreet}
sampleStreet2 = Street{num: 220, name: "Neue Str"}
defaultInner = Inner{
Value: -1,
Foo: "foo",
}
emptyOuter = Outer{}
defaultInnerOpt = InnerOpt{
Value: &defaultInner.Value,
Foo: &defaultInner.Foo,
}
emptyOuterOpt = OuterOpt{}
)
func TestStreetLensLaws(t *testing.T) {
// some comparison
eqs := EQT.Eq[*Street]()
eqa := EQT.Eq[string]()
laws := LT.AssertLaws(
t,
eqa,
eqs,
)(streetLens)
cpy := sampleStreet
assert.True(t, laws(&sampleStreet, "Neue Str."))
assert.Equal(t, cpy, sampleStreet)
}
func TestAddrLensLaws(t *testing.T) {
// some comparison
eqs := EQT.Eq[*Address]()
eqa := EQT.Eq[*Street]()
laws := LT.AssertLaws(
t,
eqa,
eqs,
)(addrLens)
cpyAddr := sampleAddress
cpyStreet := sampleStreet2
assert.True(t, laws(&sampleAddress, &sampleStreet2))
assert.Equal(t, cpyAddr, sampleAddress)
assert.Equal(t, cpyStreet, sampleStreet2)
}
func TestCompose(t *testing.T) {
// some comparison
eqs := EQT.Eq[*Address]()
eqa := EQT.Eq[string]()
streetName := L.Compose[*Address](streetLens)(addrLens)
laws := LT.AssertLaws(
t,
eqa,
eqs,
)(streetName)
cpyAddr := sampleAddress
cpyStreet := sampleStreet
assert.True(t, laws(&sampleAddress, "Neue Str."))
assert.Equal(t, cpyAddr, sampleAddress)
assert.Equal(t, cpyStreet, sampleStreet)
}
func TestOuterLensLaws(t *testing.T) {
// some equal predicates
eqValue := EQT.Eq[int]()
eqOptValue := O.Eq(eqValue)
// lens to access a value from outer
valueFromOuter := LO.ComposeOption[*Outer, int](&defaultInner)(valueLens)(outerLens)
// try to access the value, this should get an option
assert.True(t, eqOptValue.Equals(valueFromOuter.Get(&emptyOuter), O.None[int]()))
// update the object
withValue := valueFromOuter.Set(O.Some(1))(&emptyOuter)
assert.True(t, eqOptValue.Equals(valueFromOuter.Get(&emptyOuter), O.None[int]()))
assert.True(t, eqOptValue.Equals(valueFromOuter.Get(withValue), O.Some(1)))
// updating with none should remove the inner
nextValue := valueFromOuter.Set(O.None[int]())(withValue)
assert.True(t, eqOptValue.Equals(valueFromOuter.Get(nextValue), O.None[int]()))
// check if this meets the laws
eqOuter := EQT.Eq[*Outer]()
laws := LT.AssertLaws(
t,
eqOptValue,
eqOuter,
)(valueFromOuter)
assert.True(t, laws(&emptyOuter, O.Some(2)))
assert.True(t, laws(&emptyOuter, O.None[int]()))
assert.True(t, laws(withValue, O.Some(2)))
assert.True(t, laws(withValue, O.None[int]()))
}
func TestOuterOptLensLaws(t *testing.T) {
// some equal predicates
eqValue := EQT.Eq[int]()
eqOptValue := O.Eq(eqValue)
intIso := LI.FromNillable[int]()
// lens to access a value from outer
valueFromOuter := F.Pipe3(
valueOptLens,
LI.Compose[*InnerOpt](intIso),
LO.Compose[*OuterOpt, int](&defaultInnerOpt),
I.Ap[L.Lens[*OuterOpt, O.Option[int]]](outerOptLens),
)
// try to access the value, this should get an option
assert.True(t, eqOptValue.Equals(valueFromOuter.Get(&emptyOuterOpt), O.None[int]()))
// update the object
withValue := valueFromOuter.Set(O.Some(1))(&emptyOuterOpt)
assert.True(t, eqOptValue.Equals(valueFromOuter.Get(&emptyOuterOpt), O.None[int]()))
assert.True(t, eqOptValue.Equals(valueFromOuter.Get(withValue), O.Some(1)))
// updating with none should remove the inner
nextValue := valueFromOuter.Set(O.None[int]())(withValue)
assert.True(t, eqOptValue.Equals(valueFromOuter.Get(nextValue), O.None[int]()))
// check if this meets the laws
eqOuter := EQT.Eq[*OuterOpt]()
laws := LT.AssertLaws(
t,
eqOptValue,
eqOuter,
)(valueFromOuter)
assert.True(t, laws(&emptyOuterOpt, O.Some(2)))
assert.True(t, laws(&emptyOuterOpt, O.None[int]()))
assert.True(t, laws(withValue, O.Some(2)))
assert.True(t, laws(withValue, O.None[int]()))
}

View File

@@ -0,0 +1,94 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package option
import (
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/optics/lens"
"github.com/IBM/fp-go/v2/option"
)
type (
// Endomorphism is a function from a type to itself (A → A).
// It represents transformations that preserve the type.
//
// This is commonly used in lens setters to transform a structure
// by applying a function that takes and returns the same type.
//
// Example:
// increment := func(x int) int { return x + 1 }
// // increment is an Endomorphism[int]
Endomorphism[A any] = endomorphism.Endomorphism[A]
// Lens represents a functional reference to a field within a structure.
//
// A Lens[S, A] provides a way to get and set a value of type A within
// a structure of type S in an immutable way. It consists of:
// - Get: S → A (retrieve the value)
// - Set: A → S → S (update the value, returning a new structure)
//
// Lenses satisfy three laws:
// 1. Get-Put: lens.Set(lens.Get(s))(s) == s
// 2. Put-Get: lens.Get(lens.Set(a)(s)) == a
// 3. Put-Put: lens.Set(b)(lens.Set(a)(s)) == lens.Set(b)(s)
//
// Type Parameters:
// - S: The structure type containing the field
// - A: The type of the field being focused on
Lens[S, A any] = lens.Lens[S, A]
// Option represents a value that may or may not be present.
//
// It is either Some[T] containing a value of type T, or None[T]
// representing the absence of a value. This is a type-safe alternative
// to using nil pointers.
//
// Type Parameters:
// - T: The type of the value that may be present
Option[T any] = option.Option[T]
// LensO is a lens that focuses on an optional value.
//
// A LensO[S, A] is equivalent to Lens[S, Option[A]], representing
// a lens that focuses on a value of type A that may or may not be
// present within a structure S.
//
// This is particularly useful for:
// - Nullable pointer fields
// - Optional configuration values
// - Fields that may be conditionally present
//
// The getter returns Option[A] (Some if present, None if absent).
// The setter takes Option[A] (Some to set, None to remove).
//
// Type Parameters:
// - S: The structure type containing the optional field
// - A: The type of the optional value being focused on
//
// Example:
// type Config struct {
// Timeout *int
// }
//
// timeoutLens := lens.MakeLensRef(
// func(c *Config) *int { return c.Timeout },
// func(c *Config, t *int) *Config { c.Timeout = t; return c },
// )
//
// optLens := lens.FromNillableRef(timeoutLens)
// // optLens is a LensO[*Config, *int]
LensO[S, A any] = Lens[S, Option[A]]
)

View File

@@ -19,11 +19,7 @@ import (
"testing" "testing"
EQT "github.com/IBM/fp-go/v2/eq/testing" EQT "github.com/IBM/fp-go/v2/eq/testing"
F "github.com/IBM/fp-go/v2/function"
I "github.com/IBM/fp-go/v2/identity"
L "github.com/IBM/fp-go/v2/optics/lens" L "github.com/IBM/fp-go/v2/optics/lens"
LI "github.com/IBM/fp-go/v2/optics/lens/iso"
O "github.com/IBM/fp-go/v2/option"
"github.com/stretchr/testify/assert" "github.com/stretchr/testify/assert"
) )
@@ -114,10 +110,8 @@ func (addr *Address) SetStreet(s *Street) *Address {
var ( var (
streetLens = L.MakeLensRef((*Street).GetName, (*Street).SetName) streetLens = L.MakeLensRef((*Street).GetName, (*Street).SetName)
addrLens = L.MakeLensRef((*Address).GetStreet, (*Address).SetStreet) addrLens = L.MakeLensRef((*Address).GetStreet, (*Address).SetStreet)
outerLens = L.FromNillableRef(L.MakeLensRef((*Outer).GetInner, (*Outer).SetInner))
valueLens = L.MakeLensRef((*Inner).GetValue, (*Inner).SetValue) valueLens = L.MakeLensRef((*Inner).GetValue, (*Inner).SetValue)
outerOptLens = L.FromNillableRef(L.MakeLensRef((*OuterOpt).GetInner, (*OuterOpt).SetInner))
valueOptLens = L.MakeLensRef((*InnerOpt).GetValue, (*InnerOpt).SetValue) valueOptLens = L.MakeLensRef((*InnerOpt).GetValue, (*InnerOpt).SetValue)
sampleStreet = Street{num: 220, name: "Schönaicherstr"} sampleStreet = Street{num: 220, name: "Schönaicherstr"}
@@ -192,74 +186,3 @@ func TestCompose(t *testing.T) {
assert.Equal(t, cpyAddr, sampleAddress) assert.Equal(t, cpyAddr, sampleAddress)
assert.Equal(t, cpyStreet, sampleStreet) assert.Equal(t, cpyStreet, sampleStreet)
} }
func TestOuterLensLaws(t *testing.T) {
// some equal predicates
eqValue := EQT.Eq[int]()
eqOptValue := O.Eq(eqValue)
// lens to access a value from outer
valueFromOuter := L.ComposeOption[*Outer, int](&defaultInner)(valueLens)(outerLens)
// try to access the value, this should get an option
assert.True(t, eqOptValue.Equals(valueFromOuter.Get(&emptyOuter), O.None[int]()))
// update the object
withValue := valueFromOuter.Set(O.Some(1))(&emptyOuter)
assert.True(t, eqOptValue.Equals(valueFromOuter.Get(&emptyOuter), O.None[int]()))
assert.True(t, eqOptValue.Equals(valueFromOuter.Get(withValue), O.Some(1)))
// updating with none should remove the inner
nextValue := valueFromOuter.Set(O.None[int]())(withValue)
assert.True(t, eqOptValue.Equals(valueFromOuter.Get(nextValue), O.None[int]()))
// check if this meets the laws
eqOuter := EQT.Eq[*Outer]()
laws := AssertLaws(
t,
eqOptValue,
eqOuter,
)(valueFromOuter)
assert.True(t, laws(&emptyOuter, O.Some(2)))
assert.True(t, laws(&emptyOuter, O.None[int]()))
assert.True(t, laws(withValue, O.Some(2)))
assert.True(t, laws(withValue, O.None[int]()))
}
func TestOuterOptLensLaws(t *testing.T) {
// some equal predicates
eqValue := EQT.Eq[int]()
eqOptValue := O.Eq(eqValue)
intIso := LI.FromNillable[int]()
// lens to access a value from outer
valueFromOuter := F.Pipe3(
valueOptLens,
LI.Compose[*InnerOpt](intIso),
L.ComposeOptions[*OuterOpt, int](&defaultInnerOpt),
I.Ap[L.Lens[*OuterOpt, O.Option[int]]](outerOptLens),
)
// try to access the value, this should get an option
assert.True(t, eqOptValue.Equals(valueFromOuter.Get(&emptyOuterOpt), O.None[int]()))
// update the object
withValue := valueFromOuter.Set(O.Some(1))(&emptyOuterOpt)
assert.True(t, eqOptValue.Equals(valueFromOuter.Get(&emptyOuterOpt), O.None[int]()))
assert.True(t, eqOptValue.Equals(valueFromOuter.Get(withValue), O.Some(1)))
// updating with none should remove the inner
nextValue := valueFromOuter.Set(O.None[int]())(withValue)
assert.True(t, eqOptValue.Equals(valueFromOuter.Get(nextValue), O.None[int]()))
// check if this meets the laws
eqOuter := EQT.Eq[*OuterOpt]()
laws := AssertLaws(
t,
eqOptValue,
eqOuter,
)(valueFromOuter)
assert.True(t, laws(&emptyOuterOpt, O.Some(2)))
assert.True(t, laws(&emptyOuterOpt, O.None[int]()))
assert.True(t, laws(withValue, O.Some(2)))
assert.True(t, laws(withValue, O.None[int]()))
}

View File

@@ -21,11 +21,63 @@ import (
) )
type ( type (
// Endomorphism is a function from a type to itself (A → A).
// It represents transformations that preserve the type.
Endomorphism[A any] = endomorphism.Endomorphism[A] Endomorphism[A any] = endomorphism.Endomorphism[A]
// Lens is a reference to a subpart of a data type // Lens is a functional reference to a subpart of a data structure.
//
// A Lens[S, A] provides a composable way to focus on a field of type A within
// a structure of type S. It consists of two operations:
// - Get: Extracts the focused value from the structure (S → A)
// - Set: Updates the focused value in the structure, returning a new structure (A → S → S)
//
// Lenses maintain immutability by always returning new copies of the structure
// when setting values, never modifying the original.
//
// Type Parameters:
// - S: The source/structure type (the whole)
// - A: The focus/field type (the part)
//
// Lens Laws:
//
// A well-behaved lens must satisfy three laws:
//
// 1. GetSet (You get what you set):
// lens.Set(lens.Get(s))(s) == s
//
// 2. SetGet (You set what you get):
// lens.Get(lens.Set(a)(s)) == a
//
// 3. SetSet (Setting twice is the same as setting once):
// lens.Set(a2)(lens.Set(a1)(s)) == lens.Set(a2)(s)
//
// Example:
//
// type Person struct {
// Name string
// Age int
// }
//
// nameLens := lens.MakeLens(
// func(p Person) string { return p.Name },
// func(p Person, name string) Person {
// p.Name = name
// return p
// },
// )
//
// person := Person{Name: "Alice", Age: 30}
// name := nameLens.Get(person) // "Alice"
// updated := nameLens.Set("Bob")(person) // Person{Name: "Bob", Age: 30}
// // person is unchanged, updated is a new value
Lens[S, A any] struct { Lens[S, A any] struct {
// Get extracts the focused value of type A from structure S.
Get func(s S) A Get func(s S) A
// Set returns a function that updates the focused value in structure S.
// The returned function takes a structure S and returns a new structure S
// with the focused value updated to a. The original structure is never modified.
Set func(a A) Endomorphism[S] Set func(a A) Endomorphism[S]
} }
) )

View File

@@ -33,7 +33,7 @@ import (
// } // }
// result := TraverseArrayG[[]string, []int](parse)([]string{"1", "2", "3"}) // Some([1, 2, 3]) // result := TraverseArrayG[[]string, []int](parse)([]string{"1", "2", "3"}) // Some([1, 2, 3])
// result := TraverseArrayG[[]string, []int](parse)([]string{"1", "x", "3"}) // None // result := TraverseArrayG[[]string, []int](parse)([]string{"1", "x", "3"}) // None
func TraverseArrayG[GA ~[]A, GB ~[]B, A, B any](f func(A) Option[B]) func(GA) Option[GB] { func TraverseArrayG[GA ~[]A, GB ~[]B, A, B any](f Kleisli[A, B]) Kleisli[GA, GB] {
return RA.Traverse[GA]( return RA.Traverse[GA](
Of[GB], Of[GB],
Map[GB, func(B) GB], Map[GB, func(B) GB],
@@ -54,7 +54,7 @@ func TraverseArrayG[GA ~[]A, GB ~[]B, A, B any](f func(A) Option[B]) func(GA) Op
// } // }
// result := TraverseArray(validate)([]int{1, 2, 3}) // Some([2, 4, 6]) // result := TraverseArray(validate)([]int{1, 2, 3}) // Some([2, 4, 6])
// result := TraverseArray(validate)([]int{1, -1, 3}) // None // result := TraverseArray(validate)([]int{1, -1, 3}) // None
func TraverseArray[A, B any](f func(A) Option[B]) func([]A) Option[[]B] { func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return TraverseArrayG[[]A, []B](f) return TraverseArrayG[[]A, []B](f)
} }
@@ -68,7 +68,7 @@ func TraverseArray[A, B any](f func(A) Option[B]) func([]A) Option[[]B] {
// return Some(fmt.Sprintf("%d:%s", i, s)) // return Some(fmt.Sprintf("%d:%s", i, s))
// } // }
// result := TraverseArrayWithIndexG[[]string, []string](f)([]string{"a", "b"}) // Some(["0:a", "1:b"]) // result := TraverseArrayWithIndexG[[]string, []string](f)([]string{"a", "b"}) // Some(["0:a", "1:b"])
func TraverseArrayWithIndexG[GA ~[]A, GB ~[]B, A, B any](f func(int, A) Option[B]) func(GA) Option[GB] { func TraverseArrayWithIndexG[GA ~[]A, GB ~[]B, A, B any](f func(int, A) Option[B]) Kleisli[GA, GB] {
return RA.TraverseWithIndex[GA]( return RA.TraverseWithIndex[GA](
Of[GB], Of[GB],
Map[GB, func(B) GB], Map[GB, func(B) GB],
@@ -88,7 +88,7 @@ func TraverseArrayWithIndexG[GA ~[]A, GB ~[]B, A, B any](f func(int, A) Option[B
// return None[int]() // return None[int]()
// } // }
// result := TraverseArrayWithIndex(f)([]int{1, 2, 3}) // Some([1, 2, 3]) // result := TraverseArrayWithIndex(f)([]int{1, 2, 3}) // Some([1, 2, 3])
func TraverseArrayWithIndex[A, B any](f func(int, A) Option[B]) func([]A) Option[[]B] { func TraverseArrayWithIndex[A, B any](f func(int, A) Option[B]) Kleisli[[]A, []B] {
return TraverseArrayWithIndexG[[]A, []B](f) return TraverseArrayWithIndexG[[]A, []B](f)
} }

View File

@@ -19,6 +19,7 @@ import (
A "github.com/IBM/fp-go/v2/internal/apply" A "github.com/IBM/fp-go/v2/internal/apply"
C "github.com/IBM/fp-go/v2/internal/chain" C "github.com/IBM/fp-go/v2/internal/chain"
F "github.com/IBM/fp-go/v2/internal/functor" F "github.com/IBM/fp-go/v2/internal/functor"
L "github.com/IBM/fp-go/v2/optics/lens"
) )
// Do creates an empty context of type S to be used with the Bind operation. // Do creates an empty context of type S to be used with the Bind operation.
@@ -51,8 +52,8 @@ func Do[S any](
// ) // )
func Bind[S1, S2, A any]( func Bind[S1, S2, A any](
setter func(A) func(S1) S2, setter func(A) func(S1) S2,
f func(S1) Option[A], f Kleisli[S1, A],
) func(Option[S1]) Option[S2] { ) Kleisli[Option[S1], S2] {
return C.Bind( return C.Bind(
Chain[S1, S2], Chain[S1, S2],
Map[A, S2], Map[A, S2],
@@ -76,7 +77,7 @@ func Bind[S1, S2, A any](
func Let[S1, S2, B any]( func Let[S1, S2, B any](
key func(B) func(S1) S2, key func(B) func(S1) S2,
f func(S1) B, f func(S1) B,
) func(Option[S1]) Option[S2] { ) Kleisli[Option[S1], S2] {
return F.Let( return F.Let(
Map[S1, S2], Map[S1, S2],
key, key,
@@ -98,7 +99,7 @@ func Let[S1, S2, B any](
func LetTo[S1, S2, B any]( func LetTo[S1, S2, B any](
key func(B) func(S1) S2, key func(B) func(S1) S2,
b B, b B,
) func(Option[S1]) Option[S2] { ) Kleisli[Option[S1], S2] {
return F.LetTo( return F.LetTo(
Map[S1, S2], Map[S1, S2],
key, key,
@@ -118,7 +119,7 @@ func LetTo[S1, S2, B any](
// ) // )
func BindTo[S1, T any]( func BindTo[S1, T any](
setter func(T) S1, setter func(T) S1,
) func(Option[T]) Option[S1] { ) Kleisli[Option[T], S1] {
return C.BindTo( return C.BindTo(
Map[T, S1], Map[T, S1],
setter, setter,
@@ -140,7 +141,7 @@ func BindTo[S1, T any](
func ApS[S1, S2, T any]( func ApS[S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
fa Option[T], fa Option[T],
) func(Option[S1]) Option[S2] { ) Kleisli[Option[S1], S2] {
return A.ApS( return A.ApS(
Ap[S2, T], Ap[S2, T],
Map[S1, func(T) S2], Map[S1, func(T) S2],
@@ -148,3 +149,158 @@ func ApS[S1, S2, T any](
fa, fa,
) )
} }
// ApSL attaches a value to a context using a lens-based setter.
// This is a convenience function that combines ApS with a lens, allowing you to use
// optics to update nested structures in a more composable way.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// This eliminates the need to manually write setter functions.
//
// Example:
//
// type Address struct {
// Street string
// City string
// }
//
// type Person struct {
// Name string
// Address Address
// }
//
// // Create a lens for the Address field
// addressLens := lens.MakeLens(
// func(p Person) Address { return p.Address },
// func(p Person, a Address) Person { p.Address = a; return p },
// )
//
// // Use ApSL to update the address
// result := F.Pipe2(
// option.Some(Person{Name: "Alice"}),
// option.ApSL(
// addressLens,
// option.Some(Address{Street: "Main St", City: "NYC"}),
// ),
// )
func ApSL[S, T any](
lens L.Lens[S, T],
fa Option[T],
) Kleisli[Option[S], S] {
return ApS(lens.Set, fa)
}
// BindL attaches the result of a computation to a context using a lens-based setter.
// This is a convenience function that combines Bind with a lens, allowing you to use
// optics to update nested structures based on their current values.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The computation function f receives the current value of the focused field and returns
// an Option that produces the new value.
//
// Unlike ApSL, BindL uses monadic sequencing, meaning the computation f can depend on
// the current value of the focused field.
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Increment the counter, but return None if it would exceed 100
// increment := func(v int) option.Option[int] {
// if v >= 100 {
// return option.None[int]()
// }
// return option.Some(v + 1)
// }
//
// result := F.Pipe1(
// option.Some(Counter{Value: 42}),
// option.BindL(valueLens, increment),
// ) // Some(Counter{Value: 43})
func BindL[S, T any](
lens L.Lens[S, T],
f Kleisli[T, T],
) Kleisli[Option[S], S] {
return Bind[S, S, T](lens.Set, func(s S) Option[T] {
return f(lens.Get(s))
})
}
// LetL attaches the result of a pure computation to a context using a lens-based setter.
// This is a convenience function that combines Let with a lens, allowing you to use
// optics to update nested structures with pure transformations.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The transformation function f receives the current value of the focused field and returns
// the new value directly (not wrapped in Option).
//
// This is useful for pure transformations that cannot fail, such as mathematical operations,
// string manipulations, or other deterministic updates.
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Double the counter value
// double := func(v int) int { return v * 2 }
//
// result := F.Pipe1(
// option.Some(Counter{Value: 21}),
// option.LetL(valueLens, double),
// ) // Some(Counter{Value: 42})
func LetL[S, T any](
lens L.Lens[S, T],
f func(T) T,
) Kleisli[Option[S], S] {
return Let[S, S, T](lens.Set, func(s S) T {
return f(lens.Get(s))
})
}
// LetToL attaches a constant value to a context using a lens-based setter.
// This is a convenience function that combines LetTo with a lens, allowing you to use
// optics to set nested fields to specific values.
//
// The lens parameter provides the setter for a field within the structure S.
// Unlike LetL which transforms the current value, LetToL simply replaces it with
// the provided constant value b.
//
// This is useful for resetting fields, initializing values, or setting fields to
// predetermined constants.
//
// Example:
//
// type Config struct {
// Debug bool
// Timeout int
// }
//
// debugLens := lens.MakeLens(
// func(c Config) bool { return c.Debug },
// func(c Config, d bool) Config { c.Debug = d; return c },
// )
//
// result := F.Pipe1(
// option.Some(Config{Debug: true, Timeout: 30}),
// option.LetToL(debugLens, false),
// ) // Some(Config{Debug: false, Timeout: 30})
func LetToL[S, T any](
lens L.Lens[S, T],
b T,
) Kleisli[Option[S], S] {
return LetTo[S, S, T](lens.Set, b)
}

View File

@@ -43,6 +43,11 @@ type Option[A any] struct {
value A value A
} }
type (
Kleisli[A, B any] = func(A) Option[B]
Operator[A, B any] = Kleisli[Option[A], B]
)
// optString prints some debug info for the object // optString prints some debug info for the object
// //
//go:noinline //go:noinline

View File

@@ -21,7 +21,7 @@ import (
type optionFunctor[A, B any] struct{} type optionFunctor[A, B any] struct{}
func (o *optionFunctor[A, B]) Map(f func(A) B) func(Option[A]) Option[B] { func (o *optionFunctor[A, B]) Map(f func(A) B) Operator[A, B] {
return Map[A, B](f) return Map[A, B](f)
} }

File diff suppressed because it is too large Load Diff

View File

@@ -22,7 +22,7 @@ import (
L "github.com/IBM/fp-go/v2/logging" L "github.com/IBM/fp-go/v2/logging"
) )
func _log[A any](left func(string, ...any), right func(string, ...any), prefix string) func(Option[A]) Option[A] { func _log[A any](left func(string, ...any), right func(string, ...any), prefix string) Kleisli[Option[A], A] {
return Fold( return Fold(
func() Option[A] { func() Option[A] {
left("%s", prefix) left("%s", prefix)
@@ -55,9 +55,9 @@ func _log[A any](left func(string, ...any), right func(string, ...any), prefix s
// None[int](), // None[int](),
// logger("step1"), // logs "step1" // logger("step1"), // logs "step1"
// ) // None // ) // None
func Logger[A any](loggers ...*log.Logger) func(string) func(Option[A]) Option[A] { func Logger[A any](loggers ...*log.Logger) func(string) Kleisli[Option[A], A] {
left, right := L.LoggingCallbacks(loggers...) left, right := L.LoggingCallbacks(loggers...)
return func(prefix string) func(Option[A]) Option[A] { return func(prefix string) Kleisli[Option[A], A] {
delegate := _log[A](left, right, prefix) delegate := _log[A](left, right, prefix)
return func(ma Option[A]) Option[A] { return func(ma Option[A]) Option[A] {
return F.Pipe1( return F.Pipe1(

View File

@@ -25,11 +25,11 @@ func (o *optionMonad[A, B]) Of(a A) Option[A] {
return Of[A](a) return Of[A](a)
} }
func (o *optionMonad[A, B]) Map(f func(A) B) func(Option[A]) Option[B] { func (o *optionMonad[A, B]) Map(f func(A) B) Operator[A, B] {
return Map[A, B](f) return Map[A, B](f)
} }
func (o *optionMonad[A, B]) Chain(f func(A) Option[B]) func(Option[A]) Option[B] { func (o *optionMonad[A, B]) Chain(f Kleisli[A, B]) Operator[A, B] {
return Chain[A, B](f) return Chain[A, B](f)
} }

View File

@@ -39,7 +39,7 @@ func fromPredicate[A any](a A, pred func(A) bool) Option[A] {
// isPositive := FromPredicate(func(n int) bool { return n > 0 }) // isPositive := FromPredicate(func(n int) bool { return n > 0 })
// result := isPositive(5) // Some(5) // result := isPositive(5) // Some(5)
// result := isPositive(-1) // None // result := isPositive(-1) // None
func FromPredicate[A any](pred func(A) bool) func(A) Option[A] { func FromPredicate[A any](pred func(A) bool) Kleisli[A, A] {
return F.Bind2nd(fromPredicate[A], pred) return F.Bind2nd(fromPredicate[A], pred)
} }
@@ -66,7 +66,7 @@ func FromNillable[A any](a *A) Option[*A] {
// return n, err == nil // return n, err == nil
// }) // })
// result := parseNum("42") // Some(42) // result := parseNum("42") // Some(42)
func FromValidation[A, B any](f func(A) (B, bool)) func(A) Option[B] { func FromValidation[A, B any](f func(A) (B, bool)) Kleisli[A, B] {
return Optionize1(f) return Optionize1(f)
} }
@@ -94,7 +94,7 @@ func MonadAp[B, A any](fab Option[func(A) B], fa Option[A]) Option[B] {
// applyTo5 := Ap[int](fa) // applyTo5 := Ap[int](fa)
// fab := Some(func(x int) int { return x * 2 }) // fab := Some(func(x int) int { return x * 2 })
// result := applyTo5(fab) // Some(10) // result := applyTo5(fab) // Some(10)
func Ap[B, A any](fa Option[A]) func(Option[func(A) B]) Option[B] { func Ap[B, A any](fa Option[A]) Operator[func(A) B, B] {
return F.Bind2nd(MonadAp[B, A], fa) return F.Bind2nd(MonadAp[B, A], fa)
} }
@@ -117,7 +117,7 @@ func MonadMap[A, B any](fa Option[A], f func(A) B) Option[B] {
// double := Map(func(x int) int { return x * 2 }) // double := Map(func(x int) int { return x * 2 })
// result := double(Some(5)) // Some(10) // result := double(Some(5)) // Some(10)
// result := double(None[int]()) // None // result := double(None[int]()) // None
func Map[A, B any](f func(a A) B) func(Option[A]) Option[B] { func Map[A, B any](f func(a A) B) Operator[A, B] {
return Chain(F.Flow2(f, Some[B])) return Chain(F.Flow2(f, Some[B]))
} }
@@ -138,7 +138,7 @@ func MonadMapTo[A, B any](fa Option[A], b B) Option[B] {
// //
// replaceWith42 := MapTo[string, int](42) // replaceWith42 := MapTo[string, int](42)
// result := replaceWith42(Some("hello")) // Some(42) // result := replaceWith42(Some("hello")) // Some(42)
func MapTo[A, B any](b B) func(Option[A]) Option[B] { func MapTo[A, B any](b B) Operator[A, B] {
return F.Bind2nd(MonadMapTo[A, B], b) return F.Bind2nd(MonadMapTo[A, B], b)
} }
@@ -207,7 +207,7 @@ func GetOrElse[A any](onNone func() A) func(Option[A]) A {
// if x > 0 { return Some(x * 2) } // if x > 0 { return Some(x * 2) }
// return None[int]() // return None[int]()
// }) // Some(10) // }) // Some(10)
func MonadChain[A, B any](fa Option[A], f func(A) Option[B]) Option[B] { func MonadChain[A, B any](fa Option[A], f Kleisli[A, B]) Option[B] {
return MonadFold(fa, None[B], f) return MonadFold(fa, None[B], f)
} }
@@ -221,7 +221,7 @@ func MonadChain[A, B any](fa Option[A], f func(A) Option[B]) Option[B] {
// return None[int]() // return None[int]()
// }) // })
// result := validate(Some(5)) // Some(10) // result := validate(Some(5)) // Some(10)
func Chain[A, B any](f func(A) Option[B]) func(Option[A]) Option[B] { func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
return Fold(None[B], f) return Fold(None[B], f)
} }
@@ -241,7 +241,7 @@ func MonadChainTo[A, B any](_ Option[A], mb Option[B]) Option[B] {
// //
// replaceWith := ChainTo(Some("hello")) // replaceWith := ChainTo(Some("hello"))
// result := replaceWith(Some(42)) // Some("hello") // result := replaceWith(Some(42)) // Some("hello")
func ChainTo[A, B any](mb Option[B]) func(Option[A]) Option[B] { func ChainTo[A, B any](mb Option[B]) Operator[A, B] {
return F.Bind2nd(MonadChainTo[A, B], mb) return F.Bind2nd(MonadChainTo[A, B], mb)
} }
@@ -253,7 +253,7 @@ func ChainTo[A, B any](mb Option[B]) func(Option[A]) Option[B] {
// result := MonadChainFirst(Some(5), func(x int) Option[string] { // result := MonadChainFirst(Some(5), func(x int) Option[string] {
// return Some(fmt.Sprintf("%d", x)) // return Some(fmt.Sprintf("%d", x))
// }) // Some(5) - original value is kept // }) // Some(5) - original value is kept
func MonadChainFirst[A, B any](ma Option[A], f func(A) Option[B]) Option[A] { func MonadChainFirst[A, B any](ma Option[A], f Kleisli[A, B]) Option[A] {
return C.MonadChainFirst( return C.MonadChainFirst(
MonadChain[A, A], MonadChain[A, A],
MonadMap[B, A], MonadMap[B, A],
@@ -271,7 +271,7 @@ func MonadChainFirst[A, B any](ma Option[A], f func(A) Option[B]) Option[A] {
// return Some("logged") // return Some("logged")
// }) // })
// result := logAndKeep(Some(5)) // Some(5) // result := logAndKeep(Some(5)) // Some(5)
func ChainFirst[A, B any](f func(A) Option[B]) func(Option[A]) Option[A] { func ChainFirst[A, B any](f Kleisli[A, B]) Kleisli[Option[A], A] {
return C.ChainFirst( return C.ChainFirst(
Chain[A, A], Chain[A, A],
Map[B, A], Map[B, A],
@@ -309,7 +309,7 @@ func MonadAlt[A any](fa Option[A], that func() Option[A]) Option[A] {
// withDefault := Alt(func() Option[int] { return Some(0) }) // withDefault := Alt(func() Option[int] { return Some(0) })
// result := withDefault(Some(5)) // Some(5) // result := withDefault(Some(5)) // Some(5)
// result := withDefault(None[int]()) // Some(0) // result := withDefault(None[int]()) // Some(0)
func Alt[A any](that func() Option[A]) func(Option[A]) Option[A] { func Alt[A any](that func() Option[A]) Kleisli[Option[A], A] {
return Fold(that, Of[A]) return Fold(that, Of[A])
} }
@@ -361,7 +361,7 @@ func Reduce[A, B any](f func(B, A) B, initial B) func(Option[A]) B {
// result := isPositive(Some(5)) // Some(5) // result := isPositive(Some(5)) // Some(5)
// result := isPositive(Some(-1)) // None // result := isPositive(Some(-1)) // None
// result := isPositive(None[int]()) // None // result := isPositive(None[int]()) // None
func Filter[A any](pred func(A) bool) func(Option[A]) Option[A] { func Filter[A any](pred func(A) bool) Kleisli[Option[A], A] {
return Fold(None[A], F.Ternary(pred, Of[A], F.Ignore1of1[A](None[A]))) return Fold(None[A], F.Ternary(pred, Of[A], F.Ignore1of1[A](None[A])))
} }
@@ -383,6 +383,6 @@ func MonadFlap[B, A any](fab Option[func(A) B], a A) Option[B] {
// applyFive := Flap[int](5) // applyFive := Flap[int](5)
// fab := Some(func(x int) int { return x * 2 }) // fab := Some(func(x int) int { return x * 2 })
// result := applyFive(fab) // Some(10) // result := applyFive(fab) // Some(10)
func Flap[B, A any](a A) func(Option[func(A) B]) Option[B] { func Flap[B, A any](a A) Operator[func(A) B, B] {
return FC.Flap(Map[func(A) B, B], a) return FC.Flap(Map[func(A) B, B], a)
} }

View File

@@ -32,7 +32,7 @@ import (
// } // }
// input := map[string]int{"a": 1, "b": 2} // input := map[string]int{"a": 1, "b": 2}
// result := TraverseRecordG[map[string]int, map[string]int](validate)(input) // Some(map[a:2 b:4]) // result := TraverseRecordG[map[string]int, map[string]int](validate)(input) // Some(map[a:2 b:4])
func TraverseRecordG[GA ~map[K]A, GB ~map[K]B, K comparable, A, B any](f func(A) Option[B]) func(GA) Option[GB] { func TraverseRecordG[GA ~map[K]A, GB ~map[K]B, K comparable, A, B any](f Kleisli[A, B]) Kleisli[GA, GB] {
return RR.Traverse[GA]( return RR.Traverse[GA](
Of[GB], Of[GB],
Map[GB, func(B) GB], Map[GB, func(B) GB],
@@ -53,7 +53,7 @@ func TraverseRecordG[GA ~map[K]A, GB ~map[K]B, K comparable, A, B any](f func(A)
// } // }
// input := map[string]int{"a": 1, "b": 2} // input := map[string]int{"a": 1, "b": 2}
// result := TraverseRecord(validate)(input) // Some(map[a:"1" b:"2"]) // result := TraverseRecord(validate)(input) // Some(map[a:"1" b:"2"])
func TraverseRecord[K comparable, A, B any](f func(A) Option[B]) func(map[K]A) Option[map[K]B] { func TraverseRecord[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A, map[K]B] {
return TraverseRecordG[map[K]A, map[K]B](f) return TraverseRecordG[map[K]A, map[K]B](f)
} }
@@ -68,7 +68,7 @@ func TraverseRecord[K comparable, A, B any](f func(A) Option[B]) func(map[K]A) O
// } // }
// input := map[string]int{"a": 1, "b": 2} // input := map[string]int{"a": 1, "b": 2}
// result := TraverseRecordWithIndexG[map[string]int, map[string]string](f)(input) // Some(map[a:"a:1" b:"b:2"]) // result := TraverseRecordWithIndexG[map[string]int, map[string]string](f)(input) // Some(map[a:"a:1" b:"b:2"])
func TraverseRecordWithIndexG[GA ~map[K]A, GB ~map[K]B, K comparable, A, B any](f func(K, A) Option[B]) func(GA) Option[GB] { func TraverseRecordWithIndexG[GA ~map[K]A, GB ~map[K]B, K comparable, A, B any](f func(K, A) Option[B]) Kleisli[GA, GB] {
return RR.TraverseWithIndex[GA]( return RR.TraverseWithIndex[GA](
Of[GB], Of[GB],
Map[GB, func(B) GB], Map[GB, func(B) GB],
@@ -89,7 +89,7 @@ func TraverseRecordWithIndexG[GA ~map[K]A, GB ~map[K]B, K comparable, A, B any](
// } // }
// input := map[string]int{"a": 1, "b": 2} // input := map[string]int{"a": 1, "b": 2}
// result := TraverseRecordWithIndex(f)(input) // Some(map[a:1 b:2]) // result := TraverseRecordWithIndex(f)(input) // Some(map[a:1 b:2])
func TraverseRecordWithIndex[K comparable, A, B any](f func(K, A) Option[B]) func(map[K]A) Option[map[K]B] { func TraverseRecordWithIndex[K comparable, A, B any](f func(K, A) Option[B]) Kleisli[map[K]A, map[K]B] {
return TraverseRecordWithIndexG[map[K]A, map[K]B](f) return TraverseRecordWithIndexG[map[K]A, map[K]B](f)
} }

View File

@@ -35,7 +35,7 @@ import (
// ) // )
func Sequence[A, HKTA, HKTOA any]( func Sequence[A, HKTA, HKTOA any](
mof func(Option[A]) HKTOA, mof func(Option[A]) HKTOA,
mmap func(func(A) Option[A]) func(HKTA) HKTOA, mmap func(Kleisli[A, A]) func(HKTA) HKTOA,
) func(Option[HKTA]) HKTOA { ) func(Option[HKTA]) HKTOA {
return Fold(F.Nullary2(None[A], mof), mmap(Some[A])) return Fold(F.Nullary2(None[A], mof), mmap(Some[A]))
} }
@@ -59,7 +59,7 @@ func Sequence[A, HKTA, HKTOA any](
// ) // )
func Traverse[A, B, HKTB, HKTOB any]( func Traverse[A, B, HKTB, HKTOB any](
mof func(Option[B]) HKTOB, mof func(Option[B]) HKTOB,
mmap func(func(B) Option[B]) func(HKTB) HKTOB, mmap func(Kleisli[B, B]) func(HKTB) HKTOB,
) func(func(A) HKTB) func(Option[A]) HKTOB { ) func(func(A) HKTB) func(Option[A]) HKTOB {
onNone := F.Nullary2(None[B], mof) onNone := F.Nullary2(None[B], mof)
onSome := mmap(Some[B]) onSome := mmap(Some[B])

View File

@@ -19,6 +19,7 @@ import (
"github.com/IBM/fp-go/v2/internal/apply" "github.com/IBM/fp-go/v2/internal/apply"
"github.com/IBM/fp-go/v2/internal/chain" "github.com/IBM/fp-go/v2/internal/chain"
"github.com/IBM/fp-go/v2/internal/functor" "github.com/IBM/fp-go/v2/internal/functor"
L "github.com/IBM/fp-go/v2/optics/lens"
) )
// Do creates an empty context of type [S] to be used with the [Bind] operation. // Do creates an empty context of type [S] to be used with the [Bind] operation.
@@ -208,3 +209,158 @@ func ApS[R, S1, S2, T any](
fa, fa,
) )
} }
// ApSL attaches a value to a context using a lens-based setter.
// This is a convenience function that combines ApS with a lens, allowing you to use
// optics to update nested structures in a more composable way.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// This eliminates the need to manually write setter functions.
//
// Example:
//
// type State struct {
// Host string
// Port int
// }
// type Config struct {
// DefaultHost string
// DefaultPort int
// }
//
// portLens := lens.MakeLens(
// func(s State) int { return s.Port },
// func(s State, p int) State { s.Port = p; return s },
// )
//
// getPort := reader.Asks(func(c Config) int { return c.DefaultPort })
// result := F.Pipe2(
// reader.Of[Config](State{Host: "localhost"}),
// reader.ApSL(portLens, getPort),
// )
func ApSL[R, S, T any](
lens L.Lens[S, T],
fa Reader[R, T],
) Operator[R, S, S] {
return ApS(lens.Set, fa)
}
// BindL is a variant of Bind that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The function f receives the current value of the focused field and
// returns a Reader computation that produces an updated value.
//
// Example:
//
// type State struct {
// Config ConfigData
// Status string
// }
// type ConfigData struct {
// Host string
// Port int
// }
// type Env struct {
// DefaultHost string
// DefaultPort int
// }
//
// configLens := lens.MakeLens(
// func(s State) ConfigData { return s.Config },
// func(s State, c ConfigData) State { s.Config = c; return s },
// )
//
// result := F.Pipe2(
// reader.Do[Env](State{}),
// reader.BindL(configLens, func(cfg ConfigData) reader.Reader[Env, ConfigData] {
// return reader.Asks(func(e Env) ConfigData {
// return ConfigData{Host: e.DefaultHost, Port: e.DefaultPort}
// })
// }),
// )
func BindL[R, S, T any](
lens L.Lens[S, T],
f func(T) Reader[R, T],
) Operator[R, S, S] {
return Bind[R, S, S, T](lens.Set, func(s S) Reader[R, T] {
return f(lens.Get(s))
})
}
// LetL is a variant of Let that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The function f receives the current value of the focused field and
// returns a new value (without wrapping in a Reader).
//
// Example:
//
// type State struct {
// Config ConfigData
// Status string
// }
// type ConfigData struct {
// Host string
// Port int
// }
//
// configLens := lens.MakeLens(
// func(s State) ConfigData { return s.Config },
// func(s State, c ConfigData) State { s.Config = c; return s },
// )
//
// result := F.Pipe2(
// reader.Do[any](State{Config: ConfigData{Host: "localhost"}}),
// reader.LetL(configLens, func(cfg ConfigData) ConfigData {
// cfg.Port = 8080
// return cfg
// }),
// )
func LetL[R, S, T any](
lens L.Lens[S, T],
f func(T) T,
) Operator[R, S, S] {
return Let[R, S, S, T](lens.Set, func(s S) T {
return f(lens.Get(s))
})
}
// LetToL is a variant of LetTo that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The value b is set directly to the focused field.
//
// Example:
//
// type State struct {
// Config ConfigData
// Status string
// }
// type ConfigData struct {
// Host string
// Port int
// }
//
// configLens := lens.MakeLens(
// func(s State) ConfigData { return s.Config },
// func(s State, c ConfigData) State { s.Config = c; return s },
// )
//
// newConfig := ConfigData{Host: "localhost", Port: 8080}
// result := F.Pipe2(
// reader.Do[any](State{}),
// reader.LetToL(configLens, newConfig),
// )
func LetToL[R, S, T any](
lens L.Lens[S, T],
b T,
) Operator[R, S, S] {
return LetTo[R, S, S, T](lens.Set, b)
}

View File

@@ -16,6 +16,7 @@
package readereither package readereither
import ( import (
L "github.com/IBM/fp-go/v2/optics/lens"
G "github.com/IBM/fp-go/v2/readereither/generic" G "github.com/IBM/fp-go/v2/readereither/generic"
) )
@@ -158,3 +159,148 @@ func ApS[R, E, S1, S2, T any](
) func(ReaderEither[R, E, S1]) ReaderEither[R, E, S2] { ) func(ReaderEither[R, E, S1]) ReaderEither[R, E, S2] {
return G.ApS[ReaderEither[R, E, S1], ReaderEither[R, E, S2], ReaderEither[R, E, T], R, E, S1, S2, T](setter, fa) return G.ApS[ReaderEither[R, E, S1], ReaderEither[R, E, S2], ReaderEither[R, E, T], R, E, S1, S2, T](setter, fa)
} }
// ApSL attaches a value to a context using a lens-based setter.
// This is a convenience function that combines ApS with a lens, allowing you to use
// optics to update nested structures in a more composable way.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// This eliminates the need to manually write setter functions.
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
// type Env struct {
// UserService UserService
// ConfigService ConfigService
// }
//
// configLens := lens.MakeLens(
// func(s State) Config { return s.Config },
// func(s State, c Config) State { s.Config = c; return s },
// )
//
// getConfig := readereither.Asks(func(env Env) either.Either[error, Config] {
// return env.ConfigService.GetConfig()
// })
// result := F.Pipe2(
// readereither.Of[Env, error](State{}),
// readereither.ApSL(configLens, getConfig),
// )
func ApSL[R, E, S, T any](
lens L.Lens[S, T],
fa ReaderEither[R, E, T],
) func(ReaderEither[R, E, S]) ReaderEither[R, E, S] {
return ApS(lens.Set, fa)
}
// BindL is a variant of Bind that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The function f receives the current value of the focused field and
// returns a ReaderEither computation that produces an updated value.
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
// type Env struct {
// UserService UserService
// ConfigService ConfigService
// }
//
// userLens := lens.MakeLens(
// func(s State) User { return s.User },
// func(s State, u User) State { s.User = u; return s },
// )
//
// result := F.Pipe2(
// readereither.Do[Env, error](State{}),
// readereither.BindL(userLens, func(user User) readereither.ReaderEither[Env, error, User] {
// return readereither.Asks(func(env Env) either.Either[error, User] {
// return env.UserService.GetUser()
// })
// }),
// )
func BindL[R, E, S, T any](
lens L.Lens[S, T],
f func(T) ReaderEither[R, E, T],
) func(ReaderEither[R, E, S]) ReaderEither[R, E, S] {
return Bind[R, E, S, S, T](lens.Set, func(s S) ReaderEither[R, E, T] {
return f(lens.Get(s))
})
}
// LetL is a variant of Let that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The function f receives the current value of the focused field and
// returns a new value (without wrapping in a ReaderEither).
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
//
// configLens := lens.MakeLens(
// func(s State) Config { return s.Config },
// func(s State, c Config) State { s.Config = c; return s },
// )
//
// result := F.Pipe2(
// readereither.Do[any, error](State{Config: Config{Host: "localhost"}}),
// readereither.LetL(configLens, func(cfg Config) Config {
// cfg.Port = 8080
// return cfg
// }),
// )
func LetL[R, E, S, T any](
lens L.Lens[S, T],
f func(T) T,
) func(ReaderEither[R, E, S]) ReaderEither[R, E, S] {
return Let[R, E, S, S, T](lens.Set, func(s S) T {
return f(lens.Get(s))
})
}
// LetToL is a variant of LetTo that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The value b is set directly to the focused field.
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
//
// configLens := lens.MakeLens(
// func(s State) Config { return s.Config },
// func(s State, c Config) State { s.Config = c; return s },
// )
//
// newConfig := Config{Host: "localhost", Port: 8080}
// result := F.Pipe2(
// readereither.Do[any, error](State{}),
// readereither.LetToL(configLens, newConfig),
// )
func LetToL[R, E, S, T any](
lens L.Lens[S, T],
b T,
) func(ReaderEither[R, E, S]) ReaderEither[R, E, S] {
return LetTo[R, E, S, S, T](lens.Set, b)
}

View File

@@ -19,6 +19,7 @@ import (
"github.com/IBM/fp-go/v2/internal/apply" "github.com/IBM/fp-go/v2/internal/apply"
"github.com/IBM/fp-go/v2/internal/chain" "github.com/IBM/fp-go/v2/internal/chain"
"github.com/IBM/fp-go/v2/internal/functor" "github.com/IBM/fp-go/v2/internal/functor"
L "github.com/IBM/fp-go/v2/optics/lens"
) )
// Do creates an empty context of type [S] to be used with the [Bind] operation. // Do creates an empty context of type [S] to be used with the [Bind] operation.
@@ -181,3 +182,146 @@ func ApS[R, S1, S2, T any](
fa, fa,
) )
} }
// ApSL attaches a value to a context using a lens-based setter.
// This is a convenience function that combines ApS with a lens, allowing you to use
// optics to update nested structures in a more composable way.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// This eliminates the need to manually write setter functions.
//
// Example:
//
// type State struct {
// Host string
// Port int
// }
// type Config struct {
// DefaultHost string
// DefaultPort int
// }
//
// portLens := lens.MakeLens(
// func(s State) int { return s.Port },
// func(s State, p int) State { s.Port = p; return s },
// )
//
// getPort := readerio.Asks(func(c Config) io.IO[int] {
// return io.Of(c.DefaultPort)
// })
// result := F.Pipe2(
// readerio.Of[Config](State{Host: "localhost"}),
// readerio.ApSL(portLens, getPort),
// )
func ApSL[R, S, T any](
lens L.Lens[S, T],
fa ReaderIO[R, T],
) func(ReaderIO[R, S]) ReaderIO[R, S] {
return ApS(lens.Set, fa)
}
// BindL is a variant of Bind that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The function f receives the current value of the focused field and
// returns a ReaderIO computation that produces an updated value.
//
// Example:
//
// type State struct {
// Host string
// Port int
// }
// type Config struct {
// DefaultHost string
// DefaultPort int
// }
//
// portLens := lens.MakeLens(
// func(s State) int { return s.Port },
// func(s State, p int) State { s.Port = p; return s },
// )
//
// result := F.Pipe2(
// readerio.Do[Config](State{Host: "localhost"}),
// readerio.BindL(portLens, func(port int) readerio.ReaderIO[Config, int] {
// return readerio.Asks(func(c Config) io.IO[int] {
// return io.Of(c.DefaultPort)
// })
// }),
// )
func BindL[R, S, T any](
lens L.Lens[S, T],
f func(T) ReaderIO[R, T],
) func(ReaderIO[R, S]) ReaderIO[R, S] {
return Bind[R, S, S, T](lens.Set, func(s S) ReaderIO[R, T] {
return f(lens.Get(s))
})
}
// LetL is a variant of Let that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The function f receives the current value of the focused field and
// returns a new value (without wrapping in a ReaderIO).
//
// Example:
//
// type State struct {
// Host string
// Port int
// }
//
// portLens := lens.MakeLens(
// func(s State) int { return s.Port },
// func(s State, p int) State { s.Port = p; return s },
// )
//
// result := F.Pipe2(
// readerio.Do[any](State{Host: "localhost", Port: 8080}),
// readerio.LetL(portLens, func(port int) int {
// return port + 1
// }),
// )
func LetL[R, S, T any](
lens L.Lens[S, T],
f func(T) T,
) func(ReaderIO[R, S]) ReaderIO[R, S] {
return Let[R, S, S, T](lens.Set, func(s S) T {
return f(lens.Get(s))
})
}
// LetToL is a variant of LetTo that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The value b is set directly to the focused field.
//
// Example:
//
// type State struct {
// Host string
// Port int
// }
//
// portLens := lens.MakeLens(
// func(s State) int { return s.Port },
// func(s State, p int) State { s.Port = p; return s },
// )
//
// result := F.Pipe2(
// readerio.Do[any](State{Host: "localhost"}),
// readerio.LetToL(portLens, 8080),
// )
func LetToL[R, S, T any](
lens L.Lens[S, T],
b T,
) func(ReaderIO[R, S]) ReaderIO[R, S] {
return LetTo[R, S, S, T](lens.Set, b)
}

View File

@@ -17,6 +17,7 @@ package readerioeither
import ( import (
IOE "github.com/IBM/fp-go/v2/ioeither" IOE "github.com/IBM/fp-go/v2/ioeither"
L "github.com/IBM/fp-go/v2/optics/lens"
G "github.com/IBM/fp-go/v2/readerioeither/generic" G "github.com/IBM/fp-go/v2/readerioeither/generic"
) )
@@ -34,6 +35,8 @@ import (
// PostRepo PostRepository // PostRepo PostRepository
// } // }
// result := readerioeither.Do[Env, error](State{}) // result := readerioeither.Do[Env, error](State{})
//
//go:inline
func Do[R, E, S any]( func Do[R, E, S any](
empty S, empty S,
) ReaderIOEither[R, E, S] { ) ReaderIOEither[R, E, S] {
@@ -82,6 +85,8 @@ func Do[R, E, S any](
// }, // },
// ), // ),
// ) // )
//
//go:inline
func Bind[R, E, S1, S2, T any]( func Bind[R, E, S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
f func(S1) ReaderIOEither[R, E, T], f func(S1) ReaderIOEither[R, E, T],
@@ -90,6 +95,8 @@ func Bind[R, E, S1, S2, T any](
} }
// Let attaches the result of a computation to a context [S1] to produce a context [S2] // Let attaches the result of a computation to a context [S1] to produce a context [S2]
//
//go:inline
func Let[R, E, S1, S2, T any]( func Let[R, E, S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
f func(S1) T, f func(S1) T,
@@ -98,6 +105,8 @@ func Let[R, E, S1, S2, T any](
} }
// LetTo attaches the a value to a context [S1] to produce a context [S2] // LetTo attaches the a value to a context [S1] to produce a context [S2]
//
//go:inline
func LetTo[R, E, S1, S2, T any]( func LetTo[R, E, S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
b T, b T,
@@ -106,6 +115,8 @@ func LetTo[R, E, S1, S2, T any](
} }
// BindTo initializes a new state [S1] from a value [T] // BindTo initializes a new state [S1] from a value [T]
//
//go:inline
func BindTo[R, E, S1, T any]( func BindTo[R, E, S1, T any](
setter func(T) S1, setter func(T) S1,
) Operator[R, E, T, S1] { ) Operator[R, E, T, S1] {
@@ -153,9 +164,164 @@ func BindTo[R, E, S1, T any](
// getPosts, // getPosts,
// ), // ),
// ) // )
//
//go:inline
func ApS[R, E, S1, S2, T any]( func ApS[R, E, S1, S2, T any](
setter func(T) func(S1) S2, setter func(T) func(S1) S2,
fa ReaderIOEither[R, E, T], fa ReaderIOEither[R, E, T],
) Operator[R, E, S1, S2] { ) Operator[R, E, S1, S2] {
return G.ApS[ReaderIOEither[R, E, func(T) S2], ReaderIOEither[R, E, S1], ReaderIOEither[R, E, S2], ReaderIOEither[R, E, T], IOE.IOEither[E, func(T) S2], IOE.IOEither[E, S1], IOE.IOEither[E, S2], IOE.IOEither[E, T], R, E, S1, S2, T](setter, fa) return G.ApS[ReaderIOEither[R, E, func(T) S2], ReaderIOEither[R, E, S1], ReaderIOEither[R, E, S2], ReaderIOEither[R, E, T], IOE.IOEither[E, func(T) S2], IOE.IOEither[E, S1], IOE.IOEither[E, S2], IOE.IOEither[E, T], R, E, S1, S2, T](setter, fa)
} }
// ApSL attaches a value to a context using a lens-based setter.
// This is a convenience function that combines ApS with a lens, allowing you to use
// optics to update nested structures in a more composable way.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// This eliminates the need to manually write setter functions.
//
// Example:
//
// type State struct {
// User User
// Posts []Post
// }
// type Env struct {
// UserRepo UserRepository
// PostRepo PostRepository
// }
//
// userLens := lens.MakeLens(
// func(s State) User { return s.User },
// func(s State, u User) State { s.User = u; return s },
// )
//
// getUser := readerioeither.Asks(func(env Env) ioeither.IOEither[error, User] {
// return env.UserRepo.FindUser()
// })
// result := F.Pipe2(
// readerioeither.Of[Env, error](State{}),
// readerioeither.ApSL(userLens, getUser),
// )
//
//go:inline
func ApSL[R, E, S, T any](
lens L.Lens[S, T],
fa ReaderIOEither[R, E, T],
) Operator[R, E, S, S] {
return ApS(lens.Set, fa)
}
// BindL is a variant of Bind that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The function f receives the current value of the focused field and
// returns a ReaderIOEither computation that produces an updated value.
//
// Example:
//
// type State struct {
// User User
// Posts []Post
// }
// type Env struct {
// UserRepo UserRepository
// PostRepo PostRepository
// }
//
// userLens := lens.MakeLens(
// func(s State) User { return s.User },
// func(s State, u User) State { s.User = u; return s },
// )
//
// result := F.Pipe2(
// readerioeither.Do[Env, error](State{}),
// readerioeither.BindL(userLens, func(user User) readerioeither.ReaderIOEither[Env, error, User] {
// return readerioeither.Asks(func(env Env) ioeither.IOEither[error, User] {
// return env.UserRepo.FindUser()
// })
// }),
// )
//
//go:inline
func BindL[R, E, S, T any](
lens L.Lens[S, T],
f func(T) ReaderIOEither[R, E, T],
) Operator[R, E, S, S] {
return Bind[R, E, S, S, T](lens.Set, func(s S) ReaderIOEither[R, E, T] {
return f(lens.Get(s))
})
}
// LetL is a variant of Let that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The function f receives the current value of the focused field and
// returns a new value (without wrapping in a ReaderIOEither).
//
// Example:
//
// type State struct {
// User User
// Posts []Post
// }
//
// userLens := lens.MakeLens(
// func(s State) User { return s.User },
// func(s State, u User) State { s.User = u; return s },
// )
//
// result := F.Pipe2(
// readerioeither.Do[any, error](State{User: User{Name: "Alice"}}),
// readerioeither.LetL(userLens, func(user User) User {
// user.Name = "Bob"
// return user
// }),
// )
//
//go:inline
func LetL[R, E, S, T any](
lens L.Lens[S, T],
f func(T) T,
) Operator[R, E, S, S] {
return Let[R, E, S, S, T](lens.Set, func(s S) T {
return f(lens.Get(s))
})
}
// LetToL is a variant of LetTo that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The value b is set directly to the focused field.
//
// Example:
//
// type State struct {
// User User
// Posts []Post
// }
//
// userLens := lens.MakeLens(
// func(s State) User { return s.User },
// func(s State, u User) State { s.User = u; return s },
// )
//
// newUser := User{Name: "Bob", ID: 123}
// result := F.Pipe2(
// readerioeither.Do[any, error](State{}),
// readerioeither.LetToL(userLens, newUser),
// )
//
//go:inline
func LetToL[R, E, S, T any](
lens L.Lens[S, T],
b T,
) Operator[R, E, S, S] {
return LetTo[R, E, S, S, T](lens.Set, b)
}

View File

@@ -22,6 +22,8 @@ import (
// Bracket makes sure that a resource is cleaned up in the event of an error. The release action is called regardless of // Bracket makes sure that a resource is cleaned up in the event of an error. The release action is called regardless of
// whether the body action returns and error or not. // whether the body action returns and error or not.
//
//go:inline
func Bracket[ func Bracket[
R, E, A, B, ANY any]( R, E, A, B, ANY any](

View File

@@ -22,11 +22,15 @@ import (
) )
// Eq implements the equals predicate for values contained in the IOEither monad // Eq implements the equals predicate for values contained in the IOEither monad
//
//go:inline
func Eq[R, E, A any](eq EQ.Eq[either.Either[E, A]]) func(R) EQ.Eq[ReaderIOEither[R, E, A]] { func Eq[R, E, A any](eq EQ.Eq[either.Either[E, A]]) func(R) EQ.Eq[ReaderIOEither[R, E, A]] {
return readerio.Eq[R](eq) return readerio.Eq[R](eq)
} }
// FromStrictEquals constructs an [EQ.Eq] from the canonical comparison function // FromStrictEquals constructs an [EQ.Eq] from the canonical comparison function
//
//go:inline
func FromStrictEquals[R any, E, A comparable]() func(R) EQ.Eq[ReaderIOEither[R, E, A]] { func FromStrictEquals[R any, E, A comparable]() func(R) EQ.Eq[ReaderIOEither[R, E, A]] {
return Eq[R](either.FromStrictEquals[E, A]()) return Eq[R](either.FromStrictEquals[E, A]())
} }

View File

@@ -4,205 +4,270 @@
package readerioeither package readerioeither
import ( import (
G "github.com/IBM/fp-go/v2/readerioeither/generic" G "github.com/IBM/fp-go/v2/readerioeither/generic"
) )
// From0 converts a function with 1 parameters returning a tuple into a function with 0 parameters returning a [ReaderIOEither[R]] // From0 converts a function with 1 parameters returning a tuple into a function with 0 parameters returning a [ReaderIOEither[R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func From0[F ~func(C) func() (R, error), C, R any](f F) func() ReaderIOEither[C, error, R] { func From0[F ~func(C) func() (R, error), C, R any](f F) func() ReaderIOEither[C, error, R] {
return G.From0[ReaderIOEither[C, error, R]](f) return G.From0[ReaderIOEither[C, error, R]](f)
} }
// Eitherize0 converts a function with 1 parameters returning a tuple into a function with 0 parameters returning a [ReaderIOEither[C, error, R]] // Eitherize0 converts a function with 1 parameters returning a tuple into a function with 0 parameters returning a [ReaderIOEither[C, error, R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Eitherize0[F ~func(C) (R, error), C, R any](f F) func() ReaderIOEither[C, error, R] { func Eitherize0[F ~func(C) (R, error), C, R any](f F) func() ReaderIOEither[C, error, R] {
return G.Eitherize0[ReaderIOEither[C, error, R]](f) return G.Eitherize0[ReaderIOEither[C, error, R]](f)
} }
// Uneitherize0 converts a function with 1 parameters returning a [ReaderIOEither[C, error, R]] into a function with 0 parameters returning a tuple. // Uneitherize0 converts a function with 1 parameters returning a [ReaderIOEither[C, error, R]] into a function with 0 parameters returning a tuple.
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Uneitherize0[F ~func() ReaderIOEither[C, error, R], C, R any](f F) func(C) (R, error) { func Uneitherize0[F ~func() ReaderIOEither[C, error, R], C, R any](f F) func(C) (R, error) {
return G.Uneitherize0[ReaderIOEither[C, error, R], func(C)(R, error)](f) return G.Uneitherize0[ReaderIOEither[C, error, R], func(C) (R, error)](f)
} }
// From1 converts a function with 2 parameters returning a tuple into a function with 1 parameters returning a [ReaderIOEither[R]] // From1 converts a function with 2 parameters returning a tuple into a function with 1 parameters returning a [ReaderIOEither[R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func From1[F ~func(C, T0) func() (R, error), T0, C, R any](f F) func(T0) ReaderIOEither[C, error, R] { func From1[F ~func(C, T0) func() (R, error), T0, C, R any](f F) func(T0) ReaderIOEither[C, error, R] {
return G.From1[ReaderIOEither[C, error, R]](f) return G.From1[ReaderIOEither[C, error, R]](f)
} }
// Eitherize1 converts a function with 2 parameters returning a tuple into a function with 1 parameters returning a [ReaderIOEither[C, error, R]] // Eitherize1 converts a function with 2 parameters returning a tuple into a function with 1 parameters returning a [ReaderIOEither[C, error, R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Eitherize1[F ~func(C, T0) (R, error), T0, C, R any](f F) func(T0) ReaderIOEither[C, error, R] { func Eitherize1[F ~func(C, T0) (R, error), T0, C, R any](f F) func(T0) ReaderIOEither[C, error, R] {
return G.Eitherize1[ReaderIOEither[C, error, R]](f) return G.Eitherize1[ReaderIOEither[C, error, R]](f)
} }
// Uneitherize1 converts a function with 2 parameters returning a [ReaderIOEither[C, error, R]] into a function with 1 parameters returning a tuple. // Uneitherize1 converts a function with 2 parameters returning a [ReaderIOEither[C, error, R]] into a function with 1 parameters returning a tuple.
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Uneitherize1[F ~func(T0) ReaderIOEither[C, error, R], T0, C, R any](f F) func(C, T0) (R, error) { func Uneitherize1[F ~func(T0) ReaderIOEither[C, error, R], T0, C, R any](f F) func(C, T0) (R, error) {
return G.Uneitherize1[ReaderIOEither[C, error, R], func(C, T0)(R, error)](f) return G.Uneitherize1[ReaderIOEither[C, error, R], func(C, T0) (R, error)](f)
} }
// From2 converts a function with 3 parameters returning a tuple into a function with 2 parameters returning a [ReaderIOEither[R]] // From2 converts a function with 3 parameters returning a tuple into a function with 2 parameters returning a [ReaderIOEither[R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func From2[F ~func(C, T0, T1) func() (R, error), T0, T1, C, R any](f F) func(T0, T1) ReaderIOEither[C, error, R] { func From2[F ~func(C, T0, T1) func() (R, error), T0, T1, C, R any](f F) func(T0, T1) ReaderIOEither[C, error, R] {
return G.From2[ReaderIOEither[C, error, R]](f) return G.From2[ReaderIOEither[C, error, R]](f)
} }
// Eitherize2 converts a function with 3 parameters returning a tuple into a function with 2 parameters returning a [ReaderIOEither[C, error, R]] // Eitherize2 converts a function with 3 parameters returning a tuple into a function with 2 parameters returning a [ReaderIOEither[C, error, R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Eitherize2[F ~func(C, T0, T1) (R, error), T0, T1, C, R any](f F) func(T0, T1) ReaderIOEither[C, error, R] { func Eitherize2[F ~func(C, T0, T1) (R, error), T0, T1, C, R any](f F) func(T0, T1) ReaderIOEither[C, error, R] {
return G.Eitherize2[ReaderIOEither[C, error, R]](f) return G.Eitherize2[ReaderIOEither[C, error, R]](f)
} }
// Uneitherize2 converts a function with 3 parameters returning a [ReaderIOEither[C, error, R]] into a function with 2 parameters returning a tuple. // Uneitherize2 converts a function with 3 parameters returning a [ReaderIOEither[C, error, R]] into a function with 2 parameters returning a tuple.
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Uneitherize2[F ~func(T0, T1) ReaderIOEither[C, error, R], T0, T1, C, R any](f F) func(C, T0, T1) (R, error) { func Uneitherize2[F ~func(T0, T1) ReaderIOEither[C, error, R], T0, T1, C, R any](f F) func(C, T0, T1) (R, error) {
return G.Uneitherize2[ReaderIOEither[C, error, R], func(C, T0, T1)(R, error)](f) return G.Uneitherize2[ReaderIOEither[C, error, R], func(C, T0, T1) (R, error)](f)
} }
// From3 converts a function with 4 parameters returning a tuple into a function with 3 parameters returning a [ReaderIOEither[R]] // From3 converts a function with 4 parameters returning a tuple into a function with 3 parameters returning a [ReaderIOEither[R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func From3[F ~func(C, T0, T1, T2) func() (R, error), T0, T1, T2, C, R any](f F) func(T0, T1, T2) ReaderIOEither[C, error, R] { func From3[F ~func(C, T0, T1, T2) func() (R, error), T0, T1, T2, C, R any](f F) func(T0, T1, T2) ReaderIOEither[C, error, R] {
return G.From3[ReaderIOEither[C, error, R]](f) return G.From3[ReaderIOEither[C, error, R]](f)
} }
// Eitherize3 converts a function with 4 parameters returning a tuple into a function with 3 parameters returning a [ReaderIOEither[C, error, R]] // Eitherize3 converts a function with 4 parameters returning a tuple into a function with 3 parameters returning a [ReaderIOEither[C, error, R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Eitherize3[F ~func(C, T0, T1, T2) (R, error), T0, T1, T2, C, R any](f F) func(T0, T1, T2) ReaderIOEither[C, error, R] { func Eitherize3[F ~func(C, T0, T1, T2) (R, error), T0, T1, T2, C, R any](f F) func(T0, T1, T2) ReaderIOEither[C, error, R] {
return G.Eitherize3[ReaderIOEither[C, error, R]](f) return G.Eitherize3[ReaderIOEither[C, error, R]](f)
} }
// Uneitherize3 converts a function with 4 parameters returning a [ReaderIOEither[C, error, R]] into a function with 3 parameters returning a tuple. // Uneitherize3 converts a function with 4 parameters returning a [ReaderIOEither[C, error, R]] into a function with 3 parameters returning a tuple.
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Uneitherize3[F ~func(T0, T1, T2) ReaderIOEither[C, error, R], T0, T1, T2, C, R any](f F) func(C, T0, T1, T2) (R, error) { func Uneitherize3[F ~func(T0, T1, T2) ReaderIOEither[C, error, R], T0, T1, T2, C, R any](f F) func(C, T0, T1, T2) (R, error) {
return G.Uneitherize3[ReaderIOEither[C, error, R], func(C, T0, T1, T2)(R, error)](f) return G.Uneitherize3[ReaderIOEither[C, error, R], func(C, T0, T1, T2) (R, error)](f)
} }
// From4 converts a function with 5 parameters returning a tuple into a function with 4 parameters returning a [ReaderIOEither[R]] // From4 converts a function with 5 parameters returning a tuple into a function with 4 parameters returning a [ReaderIOEither[R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func From4[F ~func(C, T0, T1, T2, T3) func() (R, error), T0, T1, T2, T3, C, R any](f F) func(T0, T1, T2, T3) ReaderIOEither[C, error, R] { func From4[F ~func(C, T0, T1, T2, T3) func() (R, error), T0, T1, T2, T3, C, R any](f F) func(T0, T1, T2, T3) ReaderIOEither[C, error, R] {
return G.From4[ReaderIOEither[C, error, R]](f) return G.From4[ReaderIOEither[C, error, R]](f)
} }
// Eitherize4 converts a function with 5 parameters returning a tuple into a function with 4 parameters returning a [ReaderIOEither[C, error, R]] // Eitherize4 converts a function with 5 parameters returning a tuple into a function with 4 parameters returning a [ReaderIOEither[C, error, R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Eitherize4[F ~func(C, T0, T1, T2, T3) (R, error), T0, T1, T2, T3, C, R any](f F) func(T0, T1, T2, T3) ReaderIOEither[C, error, R] { func Eitherize4[F ~func(C, T0, T1, T2, T3) (R, error), T0, T1, T2, T3, C, R any](f F) func(T0, T1, T2, T3) ReaderIOEither[C, error, R] {
return G.Eitherize4[ReaderIOEither[C, error, R]](f) return G.Eitherize4[ReaderIOEither[C, error, R]](f)
} }
// Uneitherize4 converts a function with 5 parameters returning a [ReaderIOEither[C, error, R]] into a function with 4 parameters returning a tuple. // Uneitherize4 converts a function with 5 parameters returning a [ReaderIOEither[C, error, R]] into a function with 4 parameters returning a tuple.
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Uneitherize4[F ~func(T0, T1, T2, T3) ReaderIOEither[C, error, R], T0, T1, T2, T3, C, R any](f F) func(C, T0, T1, T2, T3) (R, error) { func Uneitherize4[F ~func(T0, T1, T2, T3) ReaderIOEither[C, error, R], T0, T1, T2, T3, C, R any](f F) func(C, T0, T1, T2, T3) (R, error) {
return G.Uneitherize4[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3)(R, error)](f) return G.Uneitherize4[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3) (R, error)](f)
} }
// From5 converts a function with 6 parameters returning a tuple into a function with 5 parameters returning a [ReaderIOEither[R]] // From5 converts a function with 6 parameters returning a tuple into a function with 5 parameters returning a [ReaderIOEither[R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func From5[F ~func(C, T0, T1, T2, T3, T4) func() (R, error), T0, T1, T2, T3, T4, C, R any](f F) func(T0, T1, T2, T3, T4) ReaderIOEither[C, error, R] { func From5[F ~func(C, T0, T1, T2, T3, T4) func() (R, error), T0, T1, T2, T3, T4, C, R any](f F) func(T0, T1, T2, T3, T4) ReaderIOEither[C, error, R] {
return G.From5[ReaderIOEither[C, error, R]](f) return G.From5[ReaderIOEither[C, error, R]](f)
} }
// Eitherize5 converts a function with 6 parameters returning a tuple into a function with 5 parameters returning a [ReaderIOEither[C, error, R]] // Eitherize5 converts a function with 6 parameters returning a tuple into a function with 5 parameters returning a [ReaderIOEither[C, error, R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Eitherize5[F ~func(C, T0, T1, T2, T3, T4) (R, error), T0, T1, T2, T3, T4, C, R any](f F) func(T0, T1, T2, T3, T4) ReaderIOEither[C, error, R] { func Eitherize5[F ~func(C, T0, T1, T2, T3, T4) (R, error), T0, T1, T2, T3, T4, C, R any](f F) func(T0, T1, T2, T3, T4) ReaderIOEither[C, error, R] {
return G.Eitherize5[ReaderIOEither[C, error, R]](f) return G.Eitherize5[ReaderIOEither[C, error, R]](f)
} }
// Uneitherize5 converts a function with 6 parameters returning a [ReaderIOEither[C, error, R]] into a function with 5 parameters returning a tuple. // Uneitherize5 converts a function with 6 parameters returning a [ReaderIOEither[C, error, R]] into a function with 5 parameters returning a tuple.
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Uneitherize5[F ~func(T0, T1, T2, T3, T4) ReaderIOEither[C, error, R], T0, T1, T2, T3, T4, C, R any](f F) func(C, T0, T1, T2, T3, T4) (R, error) { func Uneitherize5[F ~func(T0, T1, T2, T3, T4) ReaderIOEither[C, error, R], T0, T1, T2, T3, T4, C, R any](f F) func(C, T0, T1, T2, T3, T4) (R, error) {
return G.Uneitherize5[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3, T4)(R, error)](f) return G.Uneitherize5[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3, T4) (R, error)](f)
} }
// From6 converts a function with 7 parameters returning a tuple into a function with 6 parameters returning a [ReaderIOEither[R]] // From6 converts a function with 7 parameters returning a tuple into a function with 6 parameters returning a [ReaderIOEither[R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func From6[F ~func(C, T0, T1, T2, T3, T4, T5) func() (R, error), T0, T1, T2, T3, T4, T5, C, R any](f F) func(T0, T1, T2, T3, T4, T5) ReaderIOEither[C, error, R] { func From6[F ~func(C, T0, T1, T2, T3, T4, T5) func() (R, error), T0, T1, T2, T3, T4, T5, C, R any](f F) func(T0, T1, T2, T3, T4, T5) ReaderIOEither[C, error, R] {
return G.From6[ReaderIOEither[C, error, R]](f) return G.From6[ReaderIOEither[C, error, R]](f)
} }
// Eitherize6 converts a function with 7 parameters returning a tuple into a function with 6 parameters returning a [ReaderIOEither[C, error, R]] // Eitherize6 converts a function with 7 parameters returning a tuple into a function with 6 parameters returning a [ReaderIOEither[C, error, R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Eitherize6[F ~func(C, T0, T1, T2, T3, T4, T5) (R, error), T0, T1, T2, T3, T4, T5, C, R any](f F) func(T0, T1, T2, T3, T4, T5) ReaderIOEither[C, error, R] { func Eitherize6[F ~func(C, T0, T1, T2, T3, T4, T5) (R, error), T0, T1, T2, T3, T4, T5, C, R any](f F) func(T0, T1, T2, T3, T4, T5) ReaderIOEither[C, error, R] {
return G.Eitherize6[ReaderIOEither[C, error, R]](f) return G.Eitherize6[ReaderIOEither[C, error, R]](f)
} }
// Uneitherize6 converts a function with 7 parameters returning a [ReaderIOEither[C, error, R]] into a function with 6 parameters returning a tuple. // Uneitherize6 converts a function with 7 parameters returning a [ReaderIOEither[C, error, R]] into a function with 6 parameters returning a tuple.
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Uneitherize6[F ~func(T0, T1, T2, T3, T4, T5) ReaderIOEither[C, error, R], T0, T1, T2, T3, T4, T5, C, R any](f F) func(C, T0, T1, T2, T3, T4, T5) (R, error) { func Uneitherize6[F ~func(T0, T1, T2, T3, T4, T5) ReaderIOEither[C, error, R], T0, T1, T2, T3, T4, T5, C, R any](f F) func(C, T0, T1, T2, T3, T4, T5) (R, error) {
return G.Uneitherize6[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3, T4, T5)(R, error)](f) return G.Uneitherize6[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3, T4, T5) (R, error)](f)
} }
// From7 converts a function with 8 parameters returning a tuple into a function with 7 parameters returning a [ReaderIOEither[R]] // From7 converts a function with 8 parameters returning a tuple into a function with 7 parameters returning a [ReaderIOEither[R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func From7[F ~func(C, T0, T1, T2, T3, T4, T5, T6) func() (R, error), T0, T1, T2, T3, T4, T5, T6, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6) ReaderIOEither[C, error, R] { func From7[F ~func(C, T0, T1, T2, T3, T4, T5, T6) func() (R, error), T0, T1, T2, T3, T4, T5, T6, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6) ReaderIOEither[C, error, R] {
return G.From7[ReaderIOEither[C, error, R]](f) return G.From7[ReaderIOEither[C, error, R]](f)
} }
// Eitherize7 converts a function with 8 parameters returning a tuple into a function with 7 parameters returning a [ReaderIOEither[C, error, R]] // Eitherize7 converts a function with 8 parameters returning a tuple into a function with 7 parameters returning a [ReaderIOEither[C, error, R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Eitherize7[F ~func(C, T0, T1, T2, T3, T4, T5, T6) (R, error), T0, T1, T2, T3, T4, T5, T6, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6) ReaderIOEither[C, error, R] { func Eitherize7[F ~func(C, T0, T1, T2, T3, T4, T5, T6) (R, error), T0, T1, T2, T3, T4, T5, T6, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6) ReaderIOEither[C, error, R] {
return G.Eitherize7[ReaderIOEither[C, error, R]](f) return G.Eitherize7[ReaderIOEither[C, error, R]](f)
} }
// Uneitherize7 converts a function with 8 parameters returning a [ReaderIOEither[C, error, R]] into a function with 7 parameters returning a tuple. // Uneitherize7 converts a function with 8 parameters returning a [ReaderIOEither[C, error, R]] into a function with 7 parameters returning a tuple.
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Uneitherize7[F ~func(T0, T1, T2, T3, T4, T5, T6) ReaderIOEither[C, error, R], T0, T1, T2, T3, T4, T5, T6, C, R any](f F) func(C, T0, T1, T2, T3, T4, T5, T6) (R, error) { func Uneitherize7[F ~func(T0, T1, T2, T3, T4, T5, T6) ReaderIOEither[C, error, R], T0, T1, T2, T3, T4, T5, T6, C, R any](f F) func(C, T0, T1, T2, T3, T4, T5, T6) (R, error) {
return G.Uneitherize7[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3, T4, T5, T6)(R, error)](f) return G.Uneitherize7[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3, T4, T5, T6) (R, error)](f)
} }
// From8 converts a function with 9 parameters returning a tuple into a function with 8 parameters returning a [ReaderIOEither[R]] // From8 converts a function with 9 parameters returning a tuple into a function with 8 parameters returning a [ReaderIOEither[R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func From8[F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7) func() (R, error), T0, T1, T2, T3, T4, T5, T6, T7, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6, T7) ReaderIOEither[C, error, R] { func From8[F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7) func() (R, error), T0, T1, T2, T3, T4, T5, T6, T7, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6, T7) ReaderIOEither[C, error, R] {
return G.From8[ReaderIOEither[C, error, R]](f) return G.From8[ReaderIOEither[C, error, R]](f)
} }
// Eitherize8 converts a function with 9 parameters returning a tuple into a function with 8 parameters returning a [ReaderIOEither[C, error, R]] // Eitherize8 converts a function with 9 parameters returning a tuple into a function with 8 parameters returning a [ReaderIOEither[C, error, R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Eitherize8[F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7) (R, error), T0, T1, T2, T3, T4, T5, T6, T7, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6, T7) ReaderIOEither[C, error, R] { func Eitherize8[F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7) (R, error), T0, T1, T2, T3, T4, T5, T6, T7, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6, T7) ReaderIOEither[C, error, R] {
return G.Eitherize8[ReaderIOEither[C, error, R]](f) return G.Eitherize8[ReaderIOEither[C, error, R]](f)
} }
// Uneitherize8 converts a function with 9 parameters returning a [ReaderIOEither[C, error, R]] into a function with 8 parameters returning a tuple. // Uneitherize8 converts a function with 9 parameters returning a [ReaderIOEither[C, error, R]] into a function with 8 parameters returning a tuple.
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Uneitherize8[F ~func(T0, T1, T2, T3, T4, T5, T6, T7) ReaderIOEither[C, error, R], T0, T1, T2, T3, T4, T5, T6, T7, C, R any](f F) func(C, T0, T1, T2, T3, T4, T5, T6, T7) (R, error) { func Uneitherize8[F ~func(T0, T1, T2, T3, T4, T5, T6, T7) ReaderIOEither[C, error, R], T0, T1, T2, T3, T4, T5, T6, T7, C, R any](f F) func(C, T0, T1, T2, T3, T4, T5, T6, T7) (R, error) {
return G.Uneitherize8[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3, T4, T5, T6, T7)(R, error)](f) return G.Uneitherize8[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3, T4, T5, T6, T7) (R, error)](f)
} }
// From9 converts a function with 10 parameters returning a tuple into a function with 9 parameters returning a [ReaderIOEither[R]] // From9 converts a function with 10 parameters returning a tuple into a function with 9 parameters returning a [ReaderIOEither[R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func From9[F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8) func() (R, error), T0, T1, T2, T3, T4, T5, T6, T7, T8, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6, T7, T8) ReaderIOEither[C, error, R] { func From9[F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8) func() (R, error), T0, T1, T2, T3, T4, T5, T6, T7, T8, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6, T7, T8) ReaderIOEither[C, error, R] {
return G.From9[ReaderIOEither[C, error, R]](f) return G.From9[ReaderIOEither[C, error, R]](f)
} }
// Eitherize9 converts a function with 10 parameters returning a tuple into a function with 9 parameters returning a [ReaderIOEither[C, error, R]] // Eitherize9 converts a function with 10 parameters returning a tuple into a function with 9 parameters returning a [ReaderIOEither[C, error, R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Eitherize9[F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8) (R, error), T0, T1, T2, T3, T4, T5, T6, T7, T8, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6, T7, T8) ReaderIOEither[C, error, R] { func Eitherize9[F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8) (R, error), T0, T1, T2, T3, T4, T5, T6, T7, T8, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6, T7, T8) ReaderIOEither[C, error, R] {
return G.Eitherize9[ReaderIOEither[C, error, R]](f) return G.Eitherize9[ReaderIOEither[C, error, R]](f)
} }
// Uneitherize9 converts a function with 10 parameters returning a [ReaderIOEither[C, error, R]] into a function with 9 parameters returning a tuple. // Uneitherize9 converts a function with 10 parameters returning a [ReaderIOEither[C, error, R]] into a function with 9 parameters returning a tuple.
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Uneitherize9[F ~func(T0, T1, T2, T3, T4, T5, T6, T7, T8) ReaderIOEither[C, error, R], T0, T1, T2, T3, T4, T5, T6, T7, T8, C, R any](f F) func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8) (R, error) { func Uneitherize9[F ~func(T0, T1, T2, T3, T4, T5, T6, T7, T8) ReaderIOEither[C, error, R], T0, T1, T2, T3, T4, T5, T6, T7, T8, C, R any](f F) func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8) (R, error) {
return G.Uneitherize9[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8)(R, error)](f) return G.Uneitherize9[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8) (R, error)](f)
} }
// From10 converts a function with 11 parameters returning a tuple into a function with 10 parameters returning a [ReaderIOEither[R]] // From10 converts a function with 11 parameters returning a tuple into a function with 10 parameters returning a [ReaderIOEither[R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func From10[F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) func() (R, error), T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) ReaderIOEither[C, error, R] { func From10[F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) func() (R, error), T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) ReaderIOEither[C, error, R] {
return G.From10[ReaderIOEither[C, error, R]](f) return G.From10[ReaderIOEither[C, error, R]](f)
} }
// Eitherize10 converts a function with 11 parameters returning a tuple into a function with 10 parameters returning a [ReaderIOEither[C, error, R]] // Eitherize10 converts a function with 11 parameters returning a tuple into a function with 10 parameters returning a [ReaderIOEither[C, error, R]]
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Eitherize10[F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) (R, error), T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) ReaderIOEither[C, error, R] { func Eitherize10[F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) (R, error), T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) ReaderIOEither[C, error, R] {
return G.Eitherize10[ReaderIOEither[C, error, R]](f) return G.Eitherize10[ReaderIOEither[C, error, R]](f)
} }
// Uneitherize10 converts a function with 11 parameters returning a [ReaderIOEither[C, error, R]] into a function with 10 parameters returning a tuple. // Uneitherize10 converts a function with 11 parameters returning a [ReaderIOEither[C, error, R]] into a function with 10 parameters returning a tuple.
// The first parameter is considered to be the context [C]. // The first parameter is considered to be the context [C].
//
//go:inline
func Uneitherize10[F ~func(T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) ReaderIOEither[C, error, R], T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, C, R any](f F) func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) (R, error) { func Uneitherize10[F ~func(T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) ReaderIOEither[C, error, R], T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, C, R any](f F) func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) (R, error) {
return G.Uneitherize10[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9)(R, error)](f) return G.Uneitherize10[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) (R, error)](f)
} }

View File

@@ -23,16 +23,22 @@ import (
) )
// Pointed returns the pointed operations for [ReaderIOEither] // Pointed returns the pointed operations for [ReaderIOEither]
//
//go:inline
func Pointed[R, E, A any]() pointed.Pointed[A, ReaderIOEither[R, E, A]] { func Pointed[R, E, A any]() pointed.Pointed[A, ReaderIOEither[R, E, A]] {
return G.Pointed[R, E, A, ReaderIOEither[R, E, A]]() return G.Pointed[R, E, A, ReaderIOEither[R, E, A]]()
} }
// Functor returns the functor operations for [ReaderIOEither] // Functor returns the functor operations for [ReaderIOEither]
//
//go:inline
func Functor[R, E, A, B any]() functor.Functor[A, B, ReaderIOEither[R, E, A], ReaderIOEither[R, E, B]] { func Functor[R, E, A, B any]() functor.Functor[A, B, ReaderIOEither[R, E, A], ReaderIOEither[R, E, B]] {
return G.Functor[R, E, A, B, ReaderIOEither[R, E, A], ReaderIOEither[R, E, B]]() return G.Functor[R, E, A, B, ReaderIOEither[R, E, A], ReaderIOEither[R, E, B]]()
} }
// Monad returns the monadic operations for [ReaderIOEither] // Monad returns the monadic operations for [ReaderIOEither]
//
//go:inline
func Monad[R, E, A, B any]() monad.Monad[A, B, ReaderIOEither[R, E, A], ReaderIOEither[R, E, B], ReaderIOEither[R, E, func(A) B]] { func Monad[R, E, A, B any]() monad.Monad[A, B, ReaderIOEither[R, E, A], ReaderIOEither[R, E, B], ReaderIOEither[R, E, func(A) B]] {
return G.Monad[R, E, A, B, ReaderIOEither[R, E, A], ReaderIOEither[R, E, B], ReaderIOEither[R, E, func(A) B]]() return G.Monad[R, E, A, B, ReaderIOEither[R, E, A], ReaderIOEither[R, E, B], ReaderIOEither[R, E, func(A) B]]()
} }

View File

@@ -52,6 +52,8 @@ func FromReaderIO[R, E, A any](f func(A) ReaderIO[R, A]) func(A) ReaderIOEither[
} }
// RightReaderIO lifts a ReaderIO into a ReaderIOEither, placing the result in the Right side. // RightReaderIO lifts a ReaderIO into a ReaderIOEither, placing the result in the Right side.
//
//go:inline
func RightReaderIO[R, E, A any](ma ReaderIO[R, A]) ReaderIOEither[R, E, A] { func RightReaderIO[R, E, A any](ma ReaderIO[R, A]) ReaderIOEither[R, E, A] {
return eithert.RightF( return eithert.RightF(
readerio.MonadMap[R, A, either.Either[E, A]], readerio.MonadMap[R, A, either.Either[E, A]],
@@ -60,6 +62,8 @@ func RightReaderIO[R, E, A any](ma ReaderIO[R, A]) ReaderIOEither[R, E, A] {
} }
// LeftReaderIO lifts a ReaderIO into a ReaderIOEither, placing the result in the Left (error) side. // LeftReaderIO lifts a ReaderIO into a ReaderIOEither, placing the result in the Left (error) side.
//
//go:inline
func LeftReaderIO[A, R, E any](me ReaderIO[R, E]) ReaderIOEither[R, E, A] { func LeftReaderIO[A, R, E any](me ReaderIO[R, E]) ReaderIOEither[R, E, A] {
return eithert.LeftF( return eithert.LeftF(
readerio.MonadMap[R, E, either.Either[E, A]], readerio.MonadMap[R, E, either.Either[E, A]],
@@ -70,12 +74,16 @@ func LeftReaderIO[A, R, E any](me ReaderIO[R, E]) ReaderIOEither[R, E, A] {
// MonadMap applies a function to the value inside a ReaderIOEither context. // MonadMap applies a function to the value inside a ReaderIOEither context.
// If the computation is successful (Right), the function is applied to the value. // If the computation is successful (Right), the function is applied to the value.
// If it's an error (Left), the error is propagated unchanged. // If it's an error (Left), the error is propagated unchanged.
//
//go:inline
func MonadMap[R, E, A, B any](fa ReaderIOEither[R, E, A], f func(A) B) ReaderIOEither[R, E, B] { func MonadMap[R, E, A, B any](fa ReaderIOEither[R, E, A], f func(A) B) ReaderIOEither[R, E, B] {
return eithert.MonadMap(readerio.MonadMap[R, either.Either[E, A], either.Either[E, B]], fa, f) return eithert.MonadMap(readerio.MonadMap[R, either.Either[E, A], either.Either[E, B]], fa, f)
} }
// Map returns a function that applies a transformation to the success value of a ReaderIOEither. // Map returns a function that applies a transformation to the success value of a ReaderIOEither.
// This is the curried version of MonadMap, useful for function composition. // This is the curried version of MonadMap, useful for function composition.
//
//go:inline
func Map[R, E, A, B any](f func(A) B) Operator[R, E, A, B] { func Map[R, E, A, B any](f func(A) B) Operator[R, E, A, B] {
return eithert.Map(readerio.Map[R, either.Either[E, A], either.Either[E, B]], f) return eithert.Map(readerio.Map[R, either.Either[E, A], either.Either[E, B]], f)
} }
@@ -95,6 +103,8 @@ func MapTo[R, E, A, B any](b B) Operator[R, E, A, B] {
// MonadChain sequences two computations where the second depends on the result of the first. // MonadChain sequences two computations where the second depends on the result of the first.
// This is the fundamental operation for composing dependent effectful computations. // This is the fundamental operation for composing dependent effectful computations.
// If the first computation fails, the second is not executed. // If the first computation fails, the second is not executed.
//
//go:inline
func MonadChain[R, E, A, B any](fa ReaderIOEither[R, E, A], f func(A) ReaderIOEither[R, E, B]) ReaderIOEither[R, E, B] { func MonadChain[R, E, A, B any](fa ReaderIOEither[R, E, A], f func(A) ReaderIOEither[R, E, B]) ReaderIOEither[R, E, B] {
return eithert.MonadChain( return eithert.MonadChain(
readerio.MonadChain[R, either.Either[E, A], either.Either[E, B]], readerio.MonadChain[R, either.Either[E, A], either.Either[E, B]],
@@ -105,6 +115,8 @@ func MonadChain[R, E, A, B any](fa ReaderIOEither[R, E, A], f func(A) ReaderIOEi
// MonadChainFirst sequences two computations but keeps the result of the first. // MonadChainFirst sequences two computations but keeps the result of the first.
// Useful for performing side effects while preserving the original value. // Useful for performing side effects while preserving the original value.
//
//go:inline
func MonadChainFirst[R, E, A, B any](fa ReaderIOEither[R, E, A], f func(A) ReaderIOEither[R, E, B]) ReaderIOEither[R, E, A] { func MonadChainFirst[R, E, A, B any](fa ReaderIOEither[R, E, A], f func(A) ReaderIOEither[R, E, B]) ReaderIOEither[R, E, A] {
return chain.MonadChainFirst( return chain.MonadChainFirst(
MonadChain[R, E, A, A], MonadChain[R, E, A, A],
@@ -115,6 +127,8 @@ func MonadChainFirst[R, E, A, B any](fa ReaderIOEither[R, E, A], f func(A) Reade
// MonadChainEitherK chains a computation that returns an Either into a ReaderIOEither. // MonadChainEitherK chains a computation that returns an Either into a ReaderIOEither.
// The Either is automatically lifted into the ReaderIOEither context. // The Either is automatically lifted into the ReaderIOEither context.
//
//go:inline
func MonadChainEitherK[R, E, A, B any](ma ReaderIOEither[R, E, A], f func(A) either.Either[E, B]) ReaderIOEither[R, E, B] { func MonadChainEitherK[R, E, A, B any](ma ReaderIOEither[R, E, A], f func(A) either.Either[E, B]) ReaderIOEither[R, E, B] {
return fromeither.MonadChainEitherK( return fromeither.MonadChainEitherK(
MonadChain[R, E, A, B], MonadChain[R, E, A, B],
@@ -126,6 +140,8 @@ func MonadChainEitherK[R, E, A, B any](ma ReaderIOEither[R, E, A], f func(A) eit
// ChainEitherK returns a function that chains an Either-returning function into ReaderIOEither. // ChainEitherK returns a function that chains an Either-returning function into ReaderIOEither.
// This is the curried version of MonadChainEitherK. // This is the curried version of MonadChainEitherK.
//
//go:inline
func ChainEitherK[R, E, A, B any](f func(A) either.Either[E, B]) Operator[R, E, A, B] { func ChainEitherK[R, E, A, B any](f func(A) either.Either[E, B]) Operator[R, E, A, B] {
return fromeither.ChainEitherK( return fromeither.ChainEitherK(
Chain[R, E, A, B], Chain[R, E, A, B],
@@ -136,6 +152,8 @@ func ChainEitherK[R, E, A, B any](f func(A) either.Either[E, B]) Operator[R, E,
// MonadChainFirstEitherK chains an Either-returning computation but keeps the original value. // MonadChainFirstEitherK chains an Either-returning computation but keeps the original value.
// Useful for validation or side effects that return Either. // Useful for validation or side effects that return Either.
//
//go:inline
func MonadChainFirstEitherK[R, E, A, B any](ma ReaderIOEither[R, E, A], f func(A) either.Either[E, B]) ReaderIOEither[R, E, A] { func MonadChainFirstEitherK[R, E, A, B any](ma ReaderIOEither[R, E, A], f func(A) either.Either[E, B]) ReaderIOEither[R, E, A] {
return fromeither.MonadChainFirstEitherK( return fromeither.MonadChainFirstEitherK(
MonadChain[R, E, A, A], MonadChain[R, E, A, A],
@@ -148,6 +166,8 @@ func MonadChainFirstEitherK[R, E, A, B any](ma ReaderIOEither[R, E, A], f func(A
// ChainFirstEitherK returns a function that chains an Either computation while preserving the original value. // ChainFirstEitherK returns a function that chains an Either computation while preserving the original value.
// This is the curried version of MonadChainFirstEitherK. // This is the curried version of MonadChainFirstEitherK.
//
//go:inline
func ChainFirstEitherK[R, E, A, B any](f func(A) either.Either[E, B]) Operator[R, E, A, A] { func ChainFirstEitherK[R, E, A, B any](f func(A) either.Either[E, B]) Operator[R, E, A, A] {
return fromeither.ChainFirstEitherK( return fromeither.ChainFirstEitherK(
Chain[R, E, A, A], Chain[R, E, A, A],
@@ -159,6 +179,8 @@ func ChainFirstEitherK[R, E, A, B any](f func(A) either.Either[E, B]) Operator[R
// MonadChainReaderK chains a Reader-returning computation into a ReaderIOEither. // MonadChainReaderK chains a Reader-returning computation into a ReaderIOEither.
// The Reader is automatically lifted into the ReaderIOEither context. // The Reader is automatically lifted into the ReaderIOEither context.
//
//go:inline
func MonadChainReaderK[R, E, A, B any](ma ReaderIOEither[R, E, A], f func(A) Reader[R, B]) ReaderIOEither[R, E, B] { func MonadChainReaderK[R, E, A, B any](ma ReaderIOEither[R, E, A], f func(A) Reader[R, B]) ReaderIOEither[R, E, B] {
return fromreader.MonadChainReaderK( return fromreader.MonadChainReaderK(
MonadChain[R, E, A, B], MonadChain[R, E, A, B],
@@ -170,6 +192,8 @@ func MonadChainReaderK[R, E, A, B any](ma ReaderIOEither[R, E, A], f func(A) Rea
// ChainReaderK returns a function that chains a Reader-returning function into ReaderIOEither. // ChainReaderK returns a function that chains a Reader-returning function into ReaderIOEither.
// This is the curried version of MonadChainReaderK. // This is the curried version of MonadChainReaderK.
//
//go:inline
func ChainReaderK[E, R, A, B any](f func(A) Reader[R, B]) Operator[R, E, A, B] { func ChainReaderK[E, R, A, B any](f func(A) Reader[R, B]) Operator[R, E, A, B] {
return fromreader.ChainReaderK( return fromreader.ChainReaderK(
MonadChain[R, E, A, B], MonadChain[R, E, A, B],
@@ -180,6 +204,8 @@ func ChainReaderK[E, R, A, B any](f func(A) Reader[R, B]) Operator[R, E, A, B] {
// MonadChainIOEitherK chains an IOEither-returning computation into a ReaderIOEither. // MonadChainIOEitherK chains an IOEither-returning computation into a ReaderIOEither.
// The IOEither is automatically lifted into the ReaderIOEither context. // The IOEither is automatically lifted into the ReaderIOEither context.
//
//go:inline
func MonadChainIOEitherK[R, E, A, B any](ma ReaderIOEither[R, E, A], f func(A) IOE.IOEither[E, B]) ReaderIOEither[R, E, B] { func MonadChainIOEitherK[R, E, A, B any](ma ReaderIOEither[R, E, A], f func(A) IOE.IOEither[E, B]) ReaderIOEither[R, E, B] {
return fromioeither.MonadChainIOEitherK( return fromioeither.MonadChainIOEitherK(
MonadChain[R, E, A, B], MonadChain[R, E, A, B],
@@ -191,6 +217,8 @@ func MonadChainIOEitherK[R, E, A, B any](ma ReaderIOEither[R, E, A], f func(A) I
// ChainIOEitherK returns a function that chains an IOEither-returning function into ReaderIOEither. // ChainIOEitherK returns a function that chains an IOEither-returning function into ReaderIOEither.
// This is the curried version of MonadChainIOEitherK. // This is the curried version of MonadChainIOEitherK.
//
//go:inline
func ChainIOEitherK[R, E, A, B any](f func(A) IOE.IOEither[E, B]) Operator[R, E, A, B] { func ChainIOEitherK[R, E, A, B any](f func(A) IOE.IOEither[E, B]) Operator[R, E, A, B] {
return fromioeither.ChainIOEitherK( return fromioeither.ChainIOEitherK(
Chain[R, E, A, B], Chain[R, E, A, B],
@@ -201,6 +229,8 @@ func ChainIOEitherK[R, E, A, B any](f func(A) IOE.IOEither[E, B]) Operator[R, E,
// MonadChainIOK chains an IO-returning computation into a ReaderIOEither. // MonadChainIOK chains an IO-returning computation into a ReaderIOEither.
// The IO is automatically lifted into the ReaderIOEither context (always succeeds). // The IO is automatically lifted into the ReaderIOEither context (always succeeds).
//
//go:inline
func MonadChainIOK[R, E, A, B any](ma ReaderIOEither[R, E, A], f func(A) io.IO[B]) ReaderIOEither[R, E, B] { func MonadChainIOK[R, E, A, B any](ma ReaderIOEither[R, E, A], f func(A) io.IO[B]) ReaderIOEither[R, E, B] {
return fromio.MonadChainIOK( return fromio.MonadChainIOK(
MonadChain[R, E, A, B], MonadChain[R, E, A, B],
@@ -212,6 +242,8 @@ func MonadChainIOK[R, E, A, B any](ma ReaderIOEither[R, E, A], f func(A) io.IO[B
// ChainIOK returns a function that chains an IO-returning function into ReaderIOEither. // ChainIOK returns a function that chains an IO-returning function into ReaderIOEither.
// This is the curried version of MonadChainIOK. // This is the curried version of MonadChainIOK.
//
//go:inline
func ChainIOK[R, E, A, B any](f func(A) io.IO[B]) Operator[R, E, A, B] { func ChainIOK[R, E, A, B any](f func(A) io.IO[B]) Operator[R, E, A, B] {
return fromio.ChainIOK( return fromio.ChainIOK(
Chain[R, E, A, B], Chain[R, E, A, B],
@@ -222,6 +254,8 @@ func ChainIOK[R, E, A, B any](f func(A) io.IO[B]) Operator[R, E, A, B] {
// MonadChainFirstIOK chains an IO computation but keeps the original value. // MonadChainFirstIOK chains an IO computation but keeps the original value.
// Useful for performing IO side effects while preserving the original value. // Useful for performing IO side effects while preserving the original value.
//
//go:inline
func MonadChainFirstIOK[R, E, A, B any](ma ReaderIOEither[R, E, A], f func(A) io.IO[B]) ReaderIOEither[R, E, A] { func MonadChainFirstIOK[R, E, A, B any](ma ReaderIOEither[R, E, A], f func(A) io.IO[B]) ReaderIOEither[R, E, A] {
return fromio.MonadChainFirstIOK( return fromio.MonadChainFirstIOK(
MonadChain[R, E, A, A], MonadChain[R, E, A, A],
@@ -234,6 +268,8 @@ func MonadChainFirstIOK[R, E, A, B any](ma ReaderIOEither[R, E, A], f func(A) io
// ChainFirstIOK returns a function that chains an IO computation while preserving the original value. // ChainFirstIOK returns a function that chains an IO computation while preserving the original value.
// This is the curried version of MonadChainFirstIOK. // This is the curried version of MonadChainFirstIOK.
//
//go:inline
func ChainFirstIOK[R, E, A, B any](f func(A) io.IO[B]) Operator[R, E, A, A] { func ChainFirstIOK[R, E, A, B any](f func(A) io.IO[B]) Operator[R, E, A, A] {
return fromio.ChainFirstIOK( return fromio.ChainFirstIOK(
Chain[R, E, A, A], Chain[R, E, A, A],
@@ -245,6 +281,8 @@ func ChainFirstIOK[R, E, A, B any](f func(A) io.IO[B]) Operator[R, E, A, A] {
// ChainOptionK returns a function that chains an Option-returning function into ReaderIOEither. // ChainOptionK returns a function that chains an Option-returning function into ReaderIOEither.
// If the Option is None, the provided error function is called to produce the error value. // If the Option is None, the provided error function is called to produce the error value.
//
//go:inline
func ChainOptionK[R, A, B, E any](onNone func() E) func(func(A) O.Option[B]) Operator[R, E, A, B] { func ChainOptionK[R, A, B, E any](onNone func() E) func(func(A) O.Option[B]) Operator[R, E, A, B] {
return fromeither.ChainOptionK( return fromeither.ChainOptionK(
MonadChain[R, E, A, B], MonadChain[R, E, A, B],
@@ -255,6 +293,8 @@ func ChainOptionK[R, A, B, E any](onNone func() E) func(func(A) O.Option[B]) Ope
// MonadAp applies a function wrapped in a context to a value wrapped in a context. // MonadAp applies a function wrapped in a context to a value wrapped in a context.
// Both computations are executed (default behavior may be sequential or parallel depending on implementation). // Both computations are executed (default behavior may be sequential or parallel depending on implementation).
//
//go:inline
func MonadAp[R, E, A, B any](fab ReaderIOEither[R, E, func(A) B], fa ReaderIOEither[R, E, A]) ReaderIOEither[R, E, B] { func MonadAp[R, E, A, B any](fab ReaderIOEither[R, E, func(A) B], fa ReaderIOEither[R, E, A]) ReaderIOEither[R, E, B] {
return eithert.MonadAp( return eithert.MonadAp(
readerio.MonadAp[Either[E, B], R, Either[E, A]], readerio.MonadAp[Either[E, B], R, Either[E, A]],
@@ -265,6 +305,8 @@ func MonadAp[R, E, A, B any](fab ReaderIOEither[R, E, func(A) B], fa ReaderIOEit
} }
// MonadApSeq applies a function in a context to a value in a context, executing them sequentially. // MonadApSeq applies a function in a context to a value in a context, executing them sequentially.
//
//go:inline
func MonadApSeq[R, E, A, B any](fab ReaderIOEither[R, E, func(A) B], fa ReaderIOEither[R, E, A]) ReaderIOEither[R, E, B] { func MonadApSeq[R, E, A, B any](fab ReaderIOEither[R, E, func(A) B], fa ReaderIOEither[R, E, A]) ReaderIOEither[R, E, B] {
return eithert.MonadAp( return eithert.MonadAp(
readerio.MonadApSeq[Either[E, B], R, Either[E, A]], readerio.MonadApSeq[Either[E, B], R, Either[E, A]],
@@ -275,6 +317,8 @@ func MonadApSeq[R, E, A, B any](fab ReaderIOEither[R, E, func(A) B], fa ReaderIO
} }
// MonadApPar applies a function in a context to a value in a context, executing them in parallel. // MonadApPar applies a function in a context to a value in a context, executing them in parallel.
//
//go:inline
func MonadApPar[R, E, A, B any](fab ReaderIOEither[R, E, func(A) B], fa ReaderIOEither[R, E, A]) ReaderIOEither[R, E, B] { func MonadApPar[R, E, A, B any](fab ReaderIOEither[R, E, func(A) B], fa ReaderIOEither[R, E, A]) ReaderIOEither[R, E, B] {
return eithert.MonadAp( return eithert.MonadAp(
readerio.MonadApPar[Either[E, B], R, Either[E, A]], readerio.MonadApPar[Either[E, B], R, Either[E, A]],
@@ -292,6 +336,8 @@ func Ap[B, R, E, A any](fa ReaderIOEither[R, E, A]) func(fab ReaderIOEither[R, E
// Chain returns a function that sequences computations where the second depends on the first. // Chain returns a function that sequences computations where the second depends on the first.
// This is the curried version of MonadChain. // This is the curried version of MonadChain.
//
//go:inline
func Chain[R, E, A, B any](f func(A) ReaderIOEither[R, E, B]) Operator[R, E, A, B] { func Chain[R, E, A, B any](f func(A) ReaderIOEither[R, E, B]) Operator[R, E, A, B] {
return eithert.Chain( return eithert.Chain(
readerio.Chain[R, either.Either[E, A], either.Either[E, B]], readerio.Chain[R, either.Either[E, A], either.Either[E, B]],
@@ -301,6 +347,8 @@ func Chain[R, E, A, B any](f func(A) ReaderIOEither[R, E, B]) Operator[R, E, A,
// ChainFirst returns a function that sequences computations but keeps the first result. // ChainFirst returns a function that sequences computations but keeps the first result.
// This is the curried version of MonadChainFirst. // This is the curried version of MonadChainFirst.
//
//go:inline
func ChainFirst[R, E, A, B any](f func(A) ReaderIOEither[R, E, B]) Operator[R, E, A, A] { func ChainFirst[R, E, A, B any](f func(A) ReaderIOEither[R, E, B]) Operator[R, E, A, A] {
return chain.ChainFirst( return chain.ChainFirst(
Chain[R, E, A, A], Chain[R, E, A, A],
@@ -309,11 +357,15 @@ func ChainFirst[R, E, A, B any](f func(A) ReaderIOEither[R, E, B]) Operator[R, E
} }
// Right creates a successful ReaderIOEither with the given value. // Right creates a successful ReaderIOEither with the given value.
//
//go:inline
func Right[R, E, A any](a A) ReaderIOEither[R, E, A] { func Right[R, E, A any](a A) ReaderIOEither[R, E, A] {
return eithert.Right(readerio.Of[R, Either[E, A]], a) return eithert.Right(readerio.Of[R, Either[E, A]], a)
} }
// Left creates a failed ReaderIOEither with the given error. // Left creates a failed ReaderIOEither with the given error.
//
//go:inline
func Left[R, A, E any](e E) ReaderIOEither[R, E, A] { func Left[R, A, E any](e E) ReaderIOEither[R, E, A] {
return eithert.Left(readerio.Of[R, Either[E, A]], e) return eithert.Left(readerio.Of[R, Either[E, A]], e)
} }
@@ -338,6 +390,8 @@ func Flatten[R, E, A any](mma ReaderIOEither[R, E, ReaderIOEither[R, E, A]]) Rea
// FromEither lifts an Either into a ReaderIOEither context. // FromEither lifts an Either into a ReaderIOEither context.
// The Either value is independent of any context or IO effects. // The Either value is independent of any context or IO effects.
//
//go:inline
func FromEither[R, E, A any](t either.Either[E, A]) ReaderIOEither[R, E, A] { func FromEither[R, E, A any](t either.Either[E, A]) ReaderIOEither[R, E, A] {
return readerio.Of[R](t) return readerio.Of[R](t)
} }
@@ -376,6 +430,8 @@ func FromIO[R, E, A any](ma io.IO[A]) ReaderIOEither[R, E, A] {
// FromIOEither lifts an IOEither into a ReaderIOEither context. // FromIOEither lifts an IOEither into a ReaderIOEither context.
// The computation becomes independent of any reader context. // The computation becomes independent of any reader context.
//
//go:inline
func FromIOEither[R, E, A any](ma IOE.IOEither[E, A]) ReaderIOEither[R, E, A] { func FromIOEither[R, E, A any](ma IOE.IOEither[E, A]) ReaderIOEither[R, E, A] {
return reader.Of[R](ma) return reader.Of[R](ma)
} }
@@ -388,48 +444,64 @@ func FromReaderEither[R, E, A any](ma RE.ReaderEither[R, E, A]) ReaderIOEither[R
// Ask returns a ReaderIOEither that retrieves the current context. // Ask returns a ReaderIOEither that retrieves the current context.
// Useful for accessing configuration or dependencies. // Useful for accessing configuration or dependencies.
//
//go:inline
func Ask[R, E any]() ReaderIOEither[R, E, R] { func Ask[R, E any]() ReaderIOEither[R, E, R] {
return fromreader.Ask(FromReader[E, R, R])() return fromreader.Ask(FromReader[E, R, R])()
} }
// Asks returns a ReaderIOEither that retrieves a value derived from the context. // Asks returns a ReaderIOEither that retrieves a value derived from the context.
// This is useful for extracting specific fields from a configuration object. // This is useful for extracting specific fields from a configuration object.
//
//go:inline
func Asks[E, R, A any](r Reader[R, A]) ReaderIOEither[R, E, A] { func Asks[E, R, A any](r Reader[R, A]) ReaderIOEither[R, E, A] {
return fromreader.Asks(FromReader[E, R, A])(r) return fromreader.Asks(FromReader[E, R, A])(r)
} }
// FromOption converts an Option to a ReaderIOEither. // FromOption converts an Option to a ReaderIOEither.
// If the Option is None, the provided function is called to produce the error. // If the Option is None, the provided function is called to produce the error.
//
//go:inline
func FromOption[R, A, E any](onNone func() E) func(O.Option[A]) ReaderIOEither[R, E, A] { func FromOption[R, A, E any](onNone func() E) func(O.Option[A]) ReaderIOEither[R, E, A] {
return fromeither.FromOption(FromEither[R, E, A], onNone) return fromeither.FromOption(FromEither[R, E, A], onNone)
} }
// FromPredicate creates a ReaderIOEither from a predicate. // FromPredicate creates a ReaderIOEither from a predicate.
// If the predicate returns false, the onFalse function is called to produce the error. // If the predicate returns false, the onFalse function is called to produce the error.
//
//go:inline
func FromPredicate[R, E, A any](pred func(A) bool, onFalse func(A) E) func(A) ReaderIOEither[R, E, A] { func FromPredicate[R, E, A any](pred func(A) bool, onFalse func(A) E) func(A) ReaderIOEither[R, E, A] {
return fromeither.FromPredicate(FromEither[R, E, A], pred, onFalse) return fromeither.FromPredicate(FromEither[R, E, A], pred, onFalse)
} }
// Fold handles both success and error cases, producing a ReaderIO. // Fold handles both success and error cases, producing a ReaderIO.
// This is useful for converting a ReaderIOEither into a ReaderIO by handling all cases. // This is useful for converting a ReaderIOEither into a ReaderIO by handling all cases.
//
//go:inline
func Fold[R, E, A, B any](onLeft func(E) ReaderIO[R, B], onRight func(A) ReaderIO[R, B]) func(ReaderIOEither[R, E, A]) ReaderIO[R, B] { func Fold[R, E, A, B any](onLeft func(E) ReaderIO[R, B], onRight func(A) ReaderIO[R, B]) func(ReaderIOEither[R, E, A]) ReaderIO[R, B] {
return eithert.MatchE(readerio.MonadChain[R, either.Either[E, A], B], onLeft, onRight) return eithert.MatchE(readerio.MonadChain[R, either.Either[E, A], B], onLeft, onRight)
} }
// GetOrElse provides a default value in case of error. // GetOrElse provides a default value in case of error.
// The default is computed lazily via a ReaderIO. // The default is computed lazily via a ReaderIO.
//
//go:inline
func GetOrElse[R, E, A any](onLeft func(E) ReaderIO[R, A]) func(ReaderIOEither[R, E, A]) ReaderIO[R, A] { func GetOrElse[R, E, A any](onLeft func(E) ReaderIO[R, A]) func(ReaderIOEither[R, E, A]) ReaderIO[R, A] {
return eithert.GetOrElse(readerio.MonadChain[R, either.Either[E, A], A], readerio.Of[R, A], onLeft) return eithert.GetOrElse(readerio.MonadChain[R, either.Either[E, A], A], readerio.Of[R, A], onLeft)
} }
// OrElse tries an alternative computation if the first one fails. // OrElse tries an alternative computation if the first one fails.
// The alternative can produce a different error type. // The alternative can produce a different error type.
//
//go:inline
func OrElse[R, E1, A, E2 any](onLeft func(E1) ReaderIOEither[R, E2, A]) func(ReaderIOEither[R, E1, A]) ReaderIOEither[R, E2, A] { func OrElse[R, E1, A, E2 any](onLeft func(E1) ReaderIOEither[R, E2, A]) func(ReaderIOEither[R, E1, A]) ReaderIOEither[R, E2, A] {
return eithert.OrElse(readerio.MonadChain[R, either.Either[E1, A], either.Either[E2, A]], readerio.Of[R, either.Either[E2, A]], onLeft) return eithert.OrElse(readerio.MonadChain[R, either.Either[E1, A], either.Either[E2, A]], readerio.Of[R, either.Either[E2, A]], onLeft)
} }
// OrLeft transforms the error using a ReaderIO if the computation fails. // OrLeft transforms the error using a ReaderIO if the computation fails.
// The success value is preserved unchanged. // The success value is preserved unchanged.
//
//go:inline
func OrLeft[A, E1, R, E2 any](onLeft func(E1) ReaderIO[R, E2]) func(ReaderIOEither[R, E1, A]) ReaderIOEither[R, E2, A] { func OrLeft[A, E1, R, E2 any](onLeft func(E1) ReaderIO[R, E2]) func(ReaderIOEither[R, E1, A]) ReaderIOEither[R, E2, A] {
return eithert.OrLeft( return eithert.OrLeft(
readerio.MonadChain[R, either.Either[E1, A], either.Either[E2, A]], readerio.MonadChain[R, either.Either[E1, A], either.Either[E2, A]],
@@ -441,6 +513,8 @@ func OrLeft[A, E1, R, E2 any](onLeft func(E1) ReaderIO[R, E2]) func(ReaderIOEith
// MonadBiMap applies two functions: one to the error, one to the success value. // MonadBiMap applies two functions: one to the error, one to the success value.
// This allows transforming both channels simultaneously. // This allows transforming both channels simultaneously.
//
//go:inline
func MonadBiMap[R, E1, E2, A, B any](fa ReaderIOEither[R, E1, A], f func(E1) E2, g func(A) B) ReaderIOEither[R, E2, B] { func MonadBiMap[R, E1, E2, A, B any](fa ReaderIOEither[R, E1, A], f func(E1) E2, g func(A) B) ReaderIOEither[R, E2, B] {
return eithert.MonadBiMap( return eithert.MonadBiMap(
readerio.MonadMap[R, either.Either[E1, A], either.Either[E2, B]], readerio.MonadMap[R, either.Either[E1, A], either.Either[E2, B]],
@@ -450,18 +524,24 @@ func MonadBiMap[R, E1, E2, A, B any](fa ReaderIOEither[R, E1, A], f func(E1) E2,
// BiMap returns a function that maps over both the error and success channels. // BiMap returns a function that maps over both the error and success channels.
// This is the curried version of MonadBiMap. // This is the curried version of MonadBiMap.
//
//go:inline
func BiMap[R, E1, E2, A, B any](f func(E1) E2, g func(A) B) func(ReaderIOEither[R, E1, A]) ReaderIOEither[R, E2, B] { func BiMap[R, E1, E2, A, B any](f func(E1) E2, g func(A) B) func(ReaderIOEither[R, E1, A]) ReaderIOEither[R, E2, B] {
return eithert.BiMap(readerio.Map[R, either.Either[E1, A], either.Either[E2, B]], f, g) return eithert.BiMap(readerio.Map[R, either.Either[E1, A], either.Either[E2, B]], f, g)
} }
// Swap exchanges the error and success types. // Swap exchanges the error and success types.
// Left becomes Right and Right becomes Left. // Left becomes Right and Right becomes Left.
//
//go:inline
func Swap[R, E, A any](val ReaderIOEither[R, E, A]) ReaderIOEither[R, A, E] { func Swap[R, E, A any](val ReaderIOEither[R, E, A]) ReaderIOEither[R, A, E] {
return reader.MonadMap(val, ioeither.Swap[E, A]) return reader.MonadMap(val, ioeither.Swap[E, A])
} }
// Defer creates a ReaderIOEither lazily via a generator function. // Defer creates a ReaderIOEither lazily via a generator function.
// The generator is called each time the ReaderIOEither is executed. // The generator is called each time the ReaderIOEither is executed.
//
//go:inline
func Defer[R, E, A any](gen L.Lazy[ReaderIOEither[R, E, A]]) ReaderIOEither[R, E, A] { func Defer[R, E, A any](gen L.Lazy[ReaderIOEither[R, E, A]]) ReaderIOEither[R, E, A] {
return readerio.Defer(gen) return readerio.Defer(gen)
} }
@@ -476,6 +556,8 @@ func TryCatch[R, E, A any](f func(R) func() (A, error), onThrow func(error) E) R
// MonadAlt tries the first computation, and if it fails, tries the second. // MonadAlt tries the first computation, and if it fails, tries the second.
// This implements the Alternative pattern for error recovery. // This implements the Alternative pattern for error recovery.
//
//go:inline
func MonadAlt[R, E, A any](first ReaderIOEither[R, E, A], second L.Lazy[ReaderIOEither[R, E, A]]) ReaderIOEither[R, E, A] { func MonadAlt[R, E, A any](first ReaderIOEither[R, E, A], second L.Lazy[ReaderIOEither[R, E, A]]) ReaderIOEither[R, E, A] {
return eithert.MonadAlt( return eithert.MonadAlt(
readerio.Of[R, Either[E, A]], readerio.Of[R, Either[E, A]],
@@ -488,6 +570,8 @@ func MonadAlt[R, E, A any](first ReaderIOEither[R, E, A], second L.Lazy[ReaderIO
// Alt returns a function that tries an alternative computation if the first fails. // Alt returns a function that tries an alternative computation if the first fails.
// This is the curried version of MonadAlt. // This is the curried version of MonadAlt.
//
//go:inline
func Alt[R, E, A any](second L.Lazy[ReaderIOEither[R, E, A]]) Operator[R, E, A, A] { func Alt[R, E, A any](second L.Lazy[ReaderIOEither[R, E, A]]) Operator[R, E, A, A] {
return eithert.Alt( return eithert.Alt(
readerio.Of[R, Either[E, A]], readerio.Of[R, Either[E, A]],
@@ -499,6 +583,8 @@ func Alt[R, E, A any](second L.Lazy[ReaderIOEither[R, E, A]]) Operator[R, E, A,
// Memoize computes the value of the ReaderIOEither lazily but exactly once. // Memoize computes the value of the ReaderIOEither lazily but exactly once.
// The context used is from the first call. Do not use if the value depends on the context. // The context used is from the first call. Do not use if the value depends on the context.
//
//go:inline
func Memoize[ func Memoize[
R, E, A any](rdr ReaderIOEither[R, E, A]) ReaderIOEither[R, E, A] { R, E, A any](rdr ReaderIOEither[R, E, A]) ReaderIOEither[R, E, A] {
return readerio.Memoize(rdr) return readerio.Memoize(rdr)
@@ -506,23 +592,31 @@ func Memoize[
// MonadFlap applies a value to a function wrapped in a context. // MonadFlap applies a value to a function wrapped in a context.
// This is the reverse of Ap - the value is fixed and the function varies. // This is the reverse of Ap - the value is fixed and the function varies.
//
//go:inline
func MonadFlap[R, E, B, A any](fab ReaderIOEither[R, E, func(A) B], a A) ReaderIOEither[R, E, B] { func MonadFlap[R, E, B, A any](fab ReaderIOEither[R, E, func(A) B], a A) ReaderIOEither[R, E, B] {
return functor.MonadFlap(MonadMap[R, E, func(A) B, B], fab, a) return functor.MonadFlap(MonadMap[R, E, func(A) B, B], fab, a)
} }
// Flap returns a function that applies a fixed value to a function in a context. // Flap returns a function that applies a fixed value to a function in a context.
// This is the curried version of MonadFlap. // This is the curried version of MonadFlap.
//
//go:inline
func Flap[R, E, B, A any](a A) func(ReaderIOEither[R, E, func(A) B]) ReaderIOEither[R, E, B] { func Flap[R, E, B, A any](a A) func(ReaderIOEither[R, E, func(A) B]) ReaderIOEither[R, E, B] {
return functor.Flap(Map[R, E, func(A) B, B], a) return functor.Flap(Map[R, E, func(A) B, B], a)
} }
// MonadMapLeft applies a function to the error value, leaving success unchanged. // MonadMapLeft applies a function to the error value, leaving success unchanged.
//
//go:inline
func MonadMapLeft[R, E1, E2, A any](fa ReaderIOEither[R, E1, A], f func(E1) E2) ReaderIOEither[R, E2, A] { func MonadMapLeft[R, E1, E2, A any](fa ReaderIOEither[R, E1, A], f func(E1) E2) ReaderIOEither[R, E2, A] {
return eithert.MonadMapLeft(readerio.MonadMap[R, Either[E1, A], Either[E2, A]], fa, f) return eithert.MonadMapLeft(readerio.MonadMap[R, Either[E1, A], Either[E2, A]], fa, f)
} }
// MapLeft returns a function that transforms the error channel. // MapLeft returns a function that transforms the error channel.
// This is the curried version of MonadMapLeft. // This is the curried version of MonadMapLeft.
//
//go:inline
func MapLeft[R, A, E1, E2 any](f func(E1) E2) func(ReaderIOEither[R, E1, A]) ReaderIOEither[R, E2, A] { func MapLeft[R, A, E1, E2 any](f func(E1) E2) func(ReaderIOEither[R, E1, A]) ReaderIOEither[R, E2, A] {
return eithert.MapLeft(readerio.Map[R, Either[E1, A], Either[E2, A]], f) return eithert.MapLeft(readerio.Map[R, Either[E1, A], Either[E2, A]], f)
} }
@@ -530,6 +624,8 @@ func MapLeft[R, A, E1, E2 any](f func(E1) E2) func(ReaderIOEither[R, E1, A]) Rea
// Local runs a computation with a modified context. // Local runs a computation with a modified context.
// The function f transforms the context before passing it to the computation. // The function f transforms the context before passing it to the computation.
// This is similar to Contravariant's contramap operation. // This is similar to Contravariant's contramap operation.
//
//go:inline
func Local[R1, R2, E, A any](f func(R2) R1) func(ReaderIOEither[R1, E, A]) ReaderIOEither[R2, E, A] { func Local[R1, R2, E, A any](f func(R2) R1) func(ReaderIOEither[R1, E, A]) ReaderIOEither[R2, E, A] {
return reader.Local[R2, R1, IOEither[E, A]](f) return reader.Local[R2, R1, IOEither[E, A]](f)
} }

View File

@@ -30,6 +30,8 @@ import (
// //
// result := SequenceT1(Of[Config, error](42)) // result := SequenceT1(Of[Config, error](42))
// // result(cfg)() returns Right(Tuple1{42}) // // result(cfg)() returns Right(Tuple1{42})
//
//go:inline
func SequenceT1[R, E, A any](a ReaderIOEither[R, E, A]) ReaderIOEither[R, E, T.Tuple1[A]] { func SequenceT1[R, E, A any](a ReaderIOEither[R, E, A]) ReaderIOEither[R, E, T.Tuple1[A]] {
return G.SequenceT1[ return G.SequenceT1[
ReaderIOEither[R, E, A], ReaderIOEither[R, E, A],
@@ -50,6 +52,8 @@ func SequenceT1[R, E, A any](a ReaderIOEither[R, E, A]) ReaderIOEither[R, E, T.T
// fetchProfile(123), // fetchProfile(123),
// ) // )
// // result(cfg)() returns Right(Tuple2{user, profile}) or Left(error) // // result(cfg)() returns Right(Tuple2{user, profile}) or Left(error)
//
//go:inline
func SequenceT2[R, E, A, B any](a ReaderIOEither[R, E, A], b ReaderIOEither[R, E, B]) ReaderIOEither[R, E, T.Tuple2[A, B]] { func SequenceT2[R, E, A, B any](a ReaderIOEither[R, E, A], b ReaderIOEither[R, E, B]) ReaderIOEither[R, E, T.Tuple2[A, B]] {
return G.SequenceT2[ return G.SequenceT2[
ReaderIOEither[R, E, A], ReaderIOEither[R, E, A],
@@ -70,6 +74,8 @@ func SequenceT2[R, E, A, B any](a ReaderIOEither[R, E, A], b ReaderIOEither[R, E
// fetchSettings(123), // fetchSettings(123),
// ) // )
// // result(cfg)() returns Right(Tuple3{user, profile, settings}) or Left(error) // // result(cfg)() returns Right(Tuple3{user, profile, settings}) or Left(error)
//
//go:inline
func SequenceT3[R, E, A, B, C any](a ReaderIOEither[R, E, A], b ReaderIOEither[R, E, B], c ReaderIOEither[R, E, C]) ReaderIOEither[R, E, T.Tuple3[A, B, C]] { func SequenceT3[R, E, A, B, C any](a ReaderIOEither[R, E, A], b ReaderIOEither[R, E, B], c ReaderIOEither[R, E, C]) ReaderIOEither[R, E, T.Tuple3[A, B, C]] {
return G.SequenceT3[ return G.SequenceT3[
ReaderIOEither[R, E, A], ReaderIOEither[R, E, A],
@@ -92,6 +98,8 @@ func SequenceT3[R, E, A, B, C any](a ReaderIOEither[R, E, A], b ReaderIOEither[R
// fetchPreferences(123), // fetchPreferences(123),
// ) // )
// // result(cfg)() returns Right(Tuple4{user, profile, settings, prefs}) or Left(error) // // result(cfg)() returns Right(Tuple4{user, profile, settings, prefs}) or Left(error)
//
//go:inline
func SequenceT4[R, E, A, B, C, D any](a ReaderIOEither[R, E, A], b ReaderIOEither[R, E, B], c ReaderIOEither[R, E, C], d ReaderIOEither[R, E, D]) ReaderIOEither[R, E, T.Tuple4[A, B, C, D]] { func SequenceT4[R, E, A, B, C, D any](a ReaderIOEither[R, E, A], b ReaderIOEither[R, E, B], c ReaderIOEither[R, E, C], d ReaderIOEither[R, E, D]) ReaderIOEither[R, E, T.Tuple4[A, B, C, D]] {
return G.SequenceT4[ return G.SequenceT4[
ReaderIOEither[R, E, A], ReaderIOEither[R, E, A],

View File

@@ -51,6 +51,8 @@ import (
// return func() { mu.Unlock() } // return func() { mu.Unlock() }
// }), // }),
// ) // )
//
//go:inline
func WithLock[R, E, A any](lock func() context.CancelFunc) Operator[R, E, A, A] { func WithLock[R, E, A any](lock func() context.CancelFunc) Operator[R, E, A, A] {
return readerio.WithLock[R, either.Either[E, A]](lock) return readerio.WithLock[R, either.Either[E, A]](lock)
} }

View File

@@ -45,6 +45,8 @@ import (
// }) // })
// result := fetchUsers([]int{1, 2, 3}) // result := fetchUsers([]int{1, 2, 3})
// // result(cfg)() returns Right([user1, user2, user3]) or Left(error) // // result(cfg)() returns Right([user1, user2, user3]) or Left(error)
//
//go:inline
func TraverseArray[R, E, A, B any](f func(A) ReaderIOEither[R, E, B]) func([]A) ReaderIOEither[R, E, []B] { func TraverseArray[R, E, A, B any](f func(A) ReaderIOEither[R, E, B]) func([]A) ReaderIOEither[R, E, []B] {
return G.TraverseArray[ReaderIOEither[R, E, B], ReaderIOEither[R, E, []B], IOEither[E, B], IOEither[E, []B], []A](f) return G.TraverseArray[ReaderIOEither[R, E, B], ReaderIOEither[R, E, []B], IOEither[E, B], IOEither[E, []B], []A](f)
} }
@@ -71,6 +73,8 @@ func TraverseArray[R, E, A, B any](f func(A) ReaderIOEither[R, E, B]) func([]A)
// processWithIndex := TraverseArrayWithIndex(func(i int, val string) ReaderIOEither[Config, error, string] { // processWithIndex := TraverseArrayWithIndex(func(i int, val string) ReaderIOEither[Config, error, string] {
// return Of[Config, error](fmt.Sprintf("%d: %s", i, val)) // return Of[Config, error](fmt.Sprintf("%d: %s", i, val))
// }) // })
//
//go:inline
func TraverseArrayWithIndex[R, E, A, B any](f func(int, A) ReaderIOEither[R, E, B]) func([]A) ReaderIOEither[R, E, []B] { func TraverseArrayWithIndex[R, E, A, B any](f func(int, A) ReaderIOEither[R, E, B]) func([]A) ReaderIOEither[R, E, []B] {
return G.TraverseArrayWithIndex[ReaderIOEither[R, E, B], ReaderIOEither[R, E, []B], IOEither[E, B], IOEither[E, []B], []A](f) return G.TraverseArrayWithIndex[ReaderIOEither[R, E, B], ReaderIOEither[R, E, []B], IOEither[E, B], IOEither[E, []B], []A](f)
} }
@@ -101,6 +105,8 @@ func TraverseArrayWithIndex[R, E, A, B any](f func(int, A) ReaderIOEither[R, E,
// } // }
// result := SequenceArray(computations) // result := SequenceArray(computations)
// // result(cfg)() returns Right([userCount, postCount, commentCount]) or Left(error) // // result(cfg)() returns Right([userCount, postCount, commentCount]) or Left(error)
//
//go:inline
func SequenceArray[R, E, A any](ma []ReaderIOEither[R, E, A]) ReaderIOEither[R, E, []A] { func SequenceArray[R, E, A any](ma []ReaderIOEither[R, E, A]) ReaderIOEither[R, E, []A] {
return G.SequenceArray[ReaderIOEither[R, E, A], ReaderIOEither[R, E, []A]](ma) return G.SequenceArray[ReaderIOEither[R, E, A], ReaderIOEither[R, E, []A]](ma)
} }
@@ -131,6 +137,8 @@ func SequenceArray[R, E, A any](ma []ReaderIOEither[R, E, A]) ReaderIOEither[R,
// return enrichUser(user) // return enrichUser(user)
// }) // })
// result := enrichUsers(map[string]User{"alice": user1, "bob": user2}) // result := enrichUsers(map[string]User{"alice": user1, "bob": user2})
//
//go:inline
func TraverseRecord[R any, K comparable, E, A, B any](f func(A) ReaderIOEither[R, E, B]) func(map[K]A) ReaderIOEither[R, E, map[K]B] { func TraverseRecord[R any, K comparable, E, A, B any](f func(A) ReaderIOEither[R, E, B]) func(map[K]A) ReaderIOEither[R, E, map[K]B] {
return G.TraverseRecord[ReaderIOEither[R, E, B], ReaderIOEither[R, E, map[K]B], IOEither[E, B], IOEither[E, map[K]B], map[K]A](f) return G.TraverseRecord[ReaderIOEither[R, E, B], ReaderIOEither[R, E, map[K]B], IOEither[E, B], IOEither[E, map[K]B], map[K]A](f)
} }
@@ -158,6 +166,8 @@ func TraverseRecord[R any, K comparable, E, A, B any](f func(A) ReaderIOEither[R
// processWithKey := TraverseRecordWithIndex(func(key string, val int) ReaderIOEither[Config, error, string] { // processWithKey := TraverseRecordWithIndex(func(key string, val int) ReaderIOEither[Config, error, string] {
// return Of[Config, error](fmt.Sprintf("%s: %d", key, val)) // return Of[Config, error](fmt.Sprintf("%s: %d", key, val))
// }) // })
//
//go:inline
func TraverseRecordWithIndex[R any, K comparable, E, A, B any](f func(K, A) ReaderIOEither[R, E, B]) func(map[K]A) ReaderIOEither[R, E, map[K]B] { func TraverseRecordWithIndex[R any, K comparable, E, A, B any](f func(K, A) ReaderIOEither[R, E, B]) func(map[K]A) ReaderIOEither[R, E, map[K]B] {
return G.TraverseRecordWithIndex[ReaderIOEither[R, E, B], ReaderIOEither[R, E, map[K]B], IOEither[E, B], IOEither[E, map[K]B], map[K]A](f) return G.TraverseRecordWithIndex[ReaderIOEither[R, E, B], ReaderIOEither[R, E, map[K]B], IOEither[E, B], IOEither[E, map[K]B], map[K]A](f)
} }
@@ -189,6 +199,8 @@ func TraverseRecordWithIndex[R any, K comparable, E, A, B any](f func(K, A) Read
// } // }
// result := SequenceRecord(computations) // result := SequenceRecord(computations)
// // result(cfg)() returns Right(map[string]int{"users": 100, "posts": 50}) or Left(error) // // result(cfg)() returns Right(map[string]int{"users": 100, "posts": 50}) or Left(error)
//
//go:inline
func SequenceRecord[R any, K comparable, E, A any](ma map[K]ReaderIOEither[R, E, A]) ReaderIOEither[R, E, map[K]A] { func SequenceRecord[R any, K comparable, E, A any](ma map[K]ReaderIOEither[R, E, A]) ReaderIOEither[R, E, map[K]A] {
return G.SequenceRecord[ReaderIOEither[R, E, A], ReaderIOEither[R, E, map[K]A]](ma) return G.SequenceRecord[ReaderIOEither[R, E, A], ReaderIOEither[R, E, map[K]A]](ma)
} }