mirror of
https://github.com/open-telemetry/opentelemetry-go.git
synced 2025-01-24 03:47:19 +02:00
342 lines
8.8 KiB
Go
342 lines
8.8 KiB
Go
|
// Copyright The OpenTelemetry Authors
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
package opencensus
|
||
|
|
||
|
import (
|
||
|
"errors"
|
||
|
"testing"
|
||
|
"time"
|
||
|
|
||
|
"go.opencensus.io/metric/metricdata"
|
||
|
|
||
|
"go.opentelemetry.io/otel/sdk/export/metric/aggregation"
|
||
|
)
|
||
|
|
||
|
func TestNewAggregationFromPoints(t *testing.T) {
|
||
|
now := time.Now()
|
||
|
for _, tc := range []struct {
|
||
|
desc string
|
||
|
input []metricdata.Point
|
||
|
expectedKind aggregation.Kind
|
||
|
expectedErr error
|
||
|
}{
|
||
|
{
|
||
|
desc: "no points",
|
||
|
expectedErr: errEmpty,
|
||
|
},
|
||
|
{
|
||
|
desc: "int point",
|
||
|
input: []metricdata.Point{
|
||
|
{
|
||
|
Time: now,
|
||
|
Value: int64(23),
|
||
|
},
|
||
|
},
|
||
|
expectedKind: aggregation.ExactKind,
|
||
|
},
|
||
|
{
|
||
|
desc: "float point",
|
||
|
input: []metricdata.Point{
|
||
|
{
|
||
|
Time: now,
|
||
|
Value: float64(23),
|
||
|
},
|
||
|
},
|
||
|
expectedKind: aggregation.ExactKind,
|
||
|
},
|
||
|
{
|
||
|
desc: "distribution point",
|
||
|
input: []metricdata.Point{
|
||
|
{
|
||
|
Time: now,
|
||
|
Value: &metricdata.Distribution{
|
||
|
Count: 2,
|
||
|
Sum: 55,
|
||
|
BucketOptions: &metricdata.BucketOptions{
|
||
|
Bounds: []float64{20, 30},
|
||
|
},
|
||
|
Buckets: []metricdata.Bucket{
|
||
|
{Count: 1},
|
||
|
{Count: 1},
|
||
|
},
|
||
|
},
|
||
|
},
|
||
|
},
|
||
|
expectedKind: aggregation.HistogramKind,
|
||
|
},
|
||
|
{
|
||
|
desc: "bad distribution bucket count",
|
||
|
input: []metricdata.Point{
|
||
|
{
|
||
|
Time: now,
|
||
|
Value: &metricdata.Distribution{
|
||
|
Count: 2,
|
||
|
Sum: 55,
|
||
|
BucketOptions: &metricdata.BucketOptions{
|
||
|
Bounds: []float64{20, 30},
|
||
|
},
|
||
|
Buckets: []metricdata.Bucket{
|
||
|
// negative bucket
|
||
|
{Count: -1},
|
||
|
{Count: 1},
|
||
|
},
|
||
|
},
|
||
|
},
|
||
|
},
|
||
|
expectedErr: errBadPoint,
|
||
|
},
|
||
|
{
|
||
|
desc: "bad distribution count",
|
||
|
input: []metricdata.Point{
|
||
|
{
|
||
|
Time: now,
|
||
|
Value: &metricdata.Distribution{
|
||
|
// negative count
|
||
|
Count: -2,
|
||
|
Sum: 55,
|
||
|
BucketOptions: &metricdata.BucketOptions{
|
||
|
Bounds: []float64{20, 30},
|
||
|
},
|
||
|
Buckets: []metricdata.Bucket{
|
||
|
{Count: 1},
|
||
|
{Count: 1},
|
||
|
},
|
||
|
},
|
||
|
},
|
||
|
},
|
||
|
expectedErr: errBadPoint,
|
||
|
},
|
||
|
{
|
||
|
desc: "incompatible point type bool",
|
||
|
input: []metricdata.Point{
|
||
|
{
|
||
|
Time: now,
|
||
|
Value: true,
|
||
|
},
|
||
|
},
|
||
|
expectedErr: errIncompatibleType,
|
||
|
},
|
||
|
{
|
||
|
desc: "dist is incompatible with exact",
|
||
|
input: []metricdata.Point{
|
||
|
{
|
||
|
Time: now,
|
||
|
Value: int64(23),
|
||
|
},
|
||
|
{
|
||
|
Time: now,
|
||
|
Value: &metricdata.Distribution{
|
||
|
Count: 2,
|
||
|
Sum: 55,
|
||
|
BucketOptions: &metricdata.BucketOptions{
|
||
|
Bounds: []float64{20, 30},
|
||
|
},
|
||
|
Buckets: []metricdata.Bucket{
|
||
|
{Count: 1},
|
||
|
{Count: 1},
|
||
|
},
|
||
|
},
|
||
|
},
|
||
|
},
|
||
|
expectedErr: errIncompatibleType,
|
||
|
},
|
||
|
{
|
||
|
desc: "int point is incompatible with dist",
|
||
|
input: []metricdata.Point{
|
||
|
{
|
||
|
Time: now,
|
||
|
Value: &metricdata.Distribution{
|
||
|
Count: 2,
|
||
|
Sum: 55,
|
||
|
BucketOptions: &metricdata.BucketOptions{
|
||
|
Bounds: []float64{20, 30},
|
||
|
},
|
||
|
Buckets: []metricdata.Bucket{
|
||
|
{Count: 1},
|
||
|
{Count: 1},
|
||
|
},
|
||
|
},
|
||
|
},
|
||
|
{
|
||
|
Time: now,
|
||
|
Value: int64(23),
|
||
|
},
|
||
|
},
|
||
|
expectedErr: errBadPoint,
|
||
|
},
|
||
|
} {
|
||
|
t.Run(tc.desc, func(t *testing.T) {
|
||
|
output, err := newAggregationFromPoints(tc.input)
|
||
|
if !errors.Is(err, tc.expectedErr) {
|
||
|
t.Errorf("newAggregationFromPoints(%v) = err(%v), want err(%v)", tc.input, err, tc.expectedErr)
|
||
|
}
|
||
|
if tc.expectedErr == nil && output.Kind() != tc.expectedKind {
|
||
|
t.Errorf("newAggregationFromPoints(%v) = %v, want %v", tc.input, output.Kind(), tc.expectedKind)
|
||
|
}
|
||
|
})
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func TestPointsAggregation(t *testing.T) {
|
||
|
now := time.Now()
|
||
|
input := []metricdata.Point{
|
||
|
{Value: int64(15)},
|
||
|
{Value: int64(-23), Time: now},
|
||
|
}
|
||
|
output, err := newAggregationFromPoints(input)
|
||
|
if err != nil {
|
||
|
t.Fatalf("newAggregationFromPoints(%v) = err(%v), want <nil>", input, err)
|
||
|
}
|
||
|
if output.Kind() != aggregation.ExactKind {
|
||
|
t.Errorf("newAggregationFromPoints(%v) = %v, want %v", input, output.Kind(), aggregation.ExactKind)
|
||
|
}
|
||
|
if output.end() != now {
|
||
|
t.Errorf("newAggregationFromPoints(%v).end() = %v, want %v", input, output.end(), now)
|
||
|
}
|
||
|
pointsAgg, ok := output.(aggregation.Points)
|
||
|
if !ok {
|
||
|
t.Errorf("newAggregationFromPoints(%v) = %v does not implement the aggregation.Points interface", input, output)
|
||
|
}
|
||
|
points, err := pointsAgg.Points()
|
||
|
if err != nil {
|
||
|
t.Fatalf("Unexpected err: %v", err)
|
||
|
}
|
||
|
if len(points) != len(input) {
|
||
|
t.Fatalf("newAggregationFromPoints(%v) resulted in %d points, want %d points", input, len(points), len(input))
|
||
|
}
|
||
|
for i := range points {
|
||
|
inputPoint := input[i]
|
||
|
outputPoint := points[i]
|
||
|
if inputPoint.Value != outputPoint.AsInt64() {
|
||
|
t.Errorf("newAggregationFromPoints(%v)[%d] = %v, want %v", input, i, outputPoint.AsInt64(), inputPoint.Value)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func TestLastValueAggregation(t *testing.T) {
|
||
|
now := time.Now()
|
||
|
input := []metricdata.Point{
|
||
|
{Value: int64(15)},
|
||
|
{Value: int64(-23), Time: now},
|
||
|
}
|
||
|
output, err := newAggregationFromPoints(input)
|
||
|
if err != nil {
|
||
|
t.Fatalf("newAggregationFromPoints(%v) = err(%v), want <nil>", input, err)
|
||
|
}
|
||
|
if output.Kind() != aggregation.ExactKind {
|
||
|
t.Errorf("newAggregationFromPoints(%v) = %v, want %v", input, output.Kind(), aggregation.ExactKind)
|
||
|
}
|
||
|
if output.end() != now {
|
||
|
t.Errorf("newAggregationFromPoints(%v).end() = %v, want %v", input, output.end(), now)
|
||
|
}
|
||
|
lvAgg, ok := output.(aggregation.LastValue)
|
||
|
if !ok {
|
||
|
t.Errorf("newAggregationFromPoints(%v) = %v does not implement the aggregation.Points interface", input, output)
|
||
|
}
|
||
|
num, endTime, err := lvAgg.LastValue()
|
||
|
if err != nil {
|
||
|
t.Fatalf("Unexpected err: %v", err)
|
||
|
}
|
||
|
if endTime != now {
|
||
|
t.Errorf("newAggregationFromPoints(%v).LastValue() = endTime: %v, want %v", input, endTime, now)
|
||
|
}
|
||
|
if num.AsInt64() != int64(-23) {
|
||
|
t.Errorf("newAggregationFromPoints(%v).LastValue() = number: %v, want %v", input, num.AsInt64(), int64(-23))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func TestHistogramAggregation(t *testing.T) {
|
||
|
now := time.Now()
|
||
|
input := []metricdata.Point{
|
||
|
{
|
||
|
Value: &metricdata.Distribution{
|
||
|
Count: 0,
|
||
|
Sum: 0,
|
||
|
BucketOptions: &metricdata.BucketOptions{
|
||
|
Bounds: []float64{20, 30},
|
||
|
},
|
||
|
Buckets: []metricdata.Bucket{
|
||
|
{Count: 0},
|
||
|
{Count: 0},
|
||
|
},
|
||
|
},
|
||
|
},
|
||
|
{
|
||
|
Time: now,
|
||
|
Value: &metricdata.Distribution{
|
||
|
Count: 2,
|
||
|
Sum: 55,
|
||
|
BucketOptions: &metricdata.BucketOptions{
|
||
|
Bounds: []float64{20, 30},
|
||
|
},
|
||
|
Buckets: []metricdata.Bucket{
|
||
|
{Count: 1},
|
||
|
{Count: 1},
|
||
|
},
|
||
|
},
|
||
|
},
|
||
|
}
|
||
|
output, err := newAggregationFromPoints(input)
|
||
|
if err != nil {
|
||
|
t.Fatalf("newAggregationFromPoints(%v) = err(%v), want <nil>", input, err)
|
||
|
}
|
||
|
if output.Kind() != aggregation.HistogramKind {
|
||
|
t.Errorf("newAggregationFromPoints(%v) = %v, want %v", input, output.Kind(), aggregation.HistogramKind)
|
||
|
}
|
||
|
if output.end() != now {
|
||
|
t.Errorf("newAggregationFromPoints(%v).end() = %v, want %v", input, output.end(), now)
|
||
|
}
|
||
|
distAgg, ok := output.(aggregation.Histogram)
|
||
|
if !ok {
|
||
|
t.Errorf("newAggregationFromPoints(%v) = %v does not implement the aggregation.Points interface", input, output)
|
||
|
}
|
||
|
sum, err := distAgg.Sum()
|
||
|
if err != nil {
|
||
|
t.Fatalf("Unexpected err: %v", err)
|
||
|
}
|
||
|
if sum.AsFloat64() != float64(55) {
|
||
|
t.Errorf("newAggregationFromPoints(%v).Sum() = %v, want %v", input, sum.AsFloat64(), float64(55))
|
||
|
}
|
||
|
count, err := distAgg.Count()
|
||
|
if err != nil {
|
||
|
t.Fatalf("Unexpected err: %v", err)
|
||
|
}
|
||
|
if count != 2 {
|
||
|
t.Errorf("newAggregationFromPoints(%v).Count() = %v, want %v", input, count, 2)
|
||
|
}
|
||
|
hist, err := distAgg.Histogram()
|
||
|
if err != nil {
|
||
|
t.Fatalf("Unexpected err: %v", err)
|
||
|
}
|
||
|
inputBucketBoundaries := []float64{20, 30}
|
||
|
if len(hist.Boundaries) != len(inputBucketBoundaries) {
|
||
|
t.Fatalf("newAggregationFromPoints(%v).Histogram() produced %d boundaries, want %d boundaries", input, len(hist.Boundaries), len(inputBucketBoundaries))
|
||
|
}
|
||
|
for i, b := range hist.Boundaries {
|
||
|
if b != inputBucketBoundaries[i] {
|
||
|
t.Errorf("newAggregationFromPoints(%v).Histogram().Boundaries[%d] = %v, want %v", input, i, b, inputBucketBoundaries[i])
|
||
|
}
|
||
|
}
|
||
|
inputBucketCounts := []uint64{1, 1}
|
||
|
if len(hist.Counts) != len(inputBucketCounts) {
|
||
|
t.Fatalf("newAggregationFromPoints(%v).Histogram() produced %d buckets, want %d buckets", input, len(hist.Counts), len(inputBucketCounts))
|
||
|
}
|
||
|
for i, c := range hist.Counts {
|
||
|
if c != inputBucketCounts[i] {
|
||
|
t.Errorf("newAggregationFromPoints(%v).Histogram().Counts[%d] = %d, want %d", input, i, c, inputBucketCounts[i])
|
||
|
}
|
||
|
}
|
||
|
}
|