1
0
mirror of https://github.com/open-telemetry/opentelemetry-go.git synced 2025-01-07 23:02:15 +02:00
opentelemetry-go/bridge/opencensus/aggregation_test.go
David Ashpole a1539d4485
OpenCensus metric exporter bridge (#1444)
* add OpenCensus metric exporter bridge

* Update bridge/opencensus/README.md

Co-authored-by: Eric Sirianni <sirianni@users.noreply.github.com>

Co-authored-by: Eric Sirianni <sirianni@users.noreply.github.com>
Co-authored-by: Tyler Yahn <MrAlias@users.noreply.github.com>
2021-03-11 09:49:20 -08:00

342 lines
8.8 KiB
Go

// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package opencensus
import (
"errors"
"testing"
"time"
"go.opencensus.io/metric/metricdata"
"go.opentelemetry.io/otel/sdk/export/metric/aggregation"
)
func TestNewAggregationFromPoints(t *testing.T) {
now := time.Now()
for _, tc := range []struct {
desc string
input []metricdata.Point
expectedKind aggregation.Kind
expectedErr error
}{
{
desc: "no points",
expectedErr: errEmpty,
},
{
desc: "int point",
input: []metricdata.Point{
{
Time: now,
Value: int64(23),
},
},
expectedKind: aggregation.ExactKind,
},
{
desc: "float point",
input: []metricdata.Point{
{
Time: now,
Value: float64(23),
},
},
expectedKind: aggregation.ExactKind,
},
{
desc: "distribution point",
input: []metricdata.Point{
{
Time: now,
Value: &metricdata.Distribution{
Count: 2,
Sum: 55,
BucketOptions: &metricdata.BucketOptions{
Bounds: []float64{20, 30},
},
Buckets: []metricdata.Bucket{
{Count: 1},
{Count: 1},
},
},
},
},
expectedKind: aggregation.HistogramKind,
},
{
desc: "bad distribution bucket count",
input: []metricdata.Point{
{
Time: now,
Value: &metricdata.Distribution{
Count: 2,
Sum: 55,
BucketOptions: &metricdata.BucketOptions{
Bounds: []float64{20, 30},
},
Buckets: []metricdata.Bucket{
// negative bucket
{Count: -1},
{Count: 1},
},
},
},
},
expectedErr: errBadPoint,
},
{
desc: "bad distribution count",
input: []metricdata.Point{
{
Time: now,
Value: &metricdata.Distribution{
// negative count
Count: -2,
Sum: 55,
BucketOptions: &metricdata.BucketOptions{
Bounds: []float64{20, 30},
},
Buckets: []metricdata.Bucket{
{Count: 1},
{Count: 1},
},
},
},
},
expectedErr: errBadPoint,
},
{
desc: "incompatible point type bool",
input: []metricdata.Point{
{
Time: now,
Value: true,
},
},
expectedErr: errIncompatibleType,
},
{
desc: "dist is incompatible with exact",
input: []metricdata.Point{
{
Time: now,
Value: int64(23),
},
{
Time: now,
Value: &metricdata.Distribution{
Count: 2,
Sum: 55,
BucketOptions: &metricdata.BucketOptions{
Bounds: []float64{20, 30},
},
Buckets: []metricdata.Bucket{
{Count: 1},
{Count: 1},
},
},
},
},
expectedErr: errIncompatibleType,
},
{
desc: "int point is incompatible with dist",
input: []metricdata.Point{
{
Time: now,
Value: &metricdata.Distribution{
Count: 2,
Sum: 55,
BucketOptions: &metricdata.BucketOptions{
Bounds: []float64{20, 30},
},
Buckets: []metricdata.Bucket{
{Count: 1},
{Count: 1},
},
},
},
{
Time: now,
Value: int64(23),
},
},
expectedErr: errBadPoint,
},
} {
t.Run(tc.desc, func(t *testing.T) {
output, err := newAggregationFromPoints(tc.input)
if !errors.Is(err, tc.expectedErr) {
t.Errorf("newAggregationFromPoints(%v) = err(%v), want err(%v)", tc.input, err, tc.expectedErr)
}
if tc.expectedErr == nil && output.Kind() != tc.expectedKind {
t.Errorf("newAggregationFromPoints(%v) = %v, want %v", tc.input, output.Kind(), tc.expectedKind)
}
})
}
}
func TestPointsAggregation(t *testing.T) {
now := time.Now()
input := []metricdata.Point{
{Value: int64(15)},
{Value: int64(-23), Time: now},
}
output, err := newAggregationFromPoints(input)
if err != nil {
t.Fatalf("newAggregationFromPoints(%v) = err(%v), want <nil>", input, err)
}
if output.Kind() != aggregation.ExactKind {
t.Errorf("newAggregationFromPoints(%v) = %v, want %v", input, output.Kind(), aggregation.ExactKind)
}
if output.end() != now {
t.Errorf("newAggregationFromPoints(%v).end() = %v, want %v", input, output.end(), now)
}
pointsAgg, ok := output.(aggregation.Points)
if !ok {
t.Errorf("newAggregationFromPoints(%v) = %v does not implement the aggregation.Points interface", input, output)
}
points, err := pointsAgg.Points()
if err != nil {
t.Fatalf("Unexpected err: %v", err)
}
if len(points) != len(input) {
t.Fatalf("newAggregationFromPoints(%v) resulted in %d points, want %d points", input, len(points), len(input))
}
for i := range points {
inputPoint := input[i]
outputPoint := points[i]
if inputPoint.Value != outputPoint.AsInt64() {
t.Errorf("newAggregationFromPoints(%v)[%d] = %v, want %v", input, i, outputPoint.AsInt64(), inputPoint.Value)
}
}
}
func TestLastValueAggregation(t *testing.T) {
now := time.Now()
input := []metricdata.Point{
{Value: int64(15)},
{Value: int64(-23), Time: now},
}
output, err := newAggregationFromPoints(input)
if err != nil {
t.Fatalf("newAggregationFromPoints(%v) = err(%v), want <nil>", input, err)
}
if output.Kind() != aggregation.ExactKind {
t.Errorf("newAggregationFromPoints(%v) = %v, want %v", input, output.Kind(), aggregation.ExactKind)
}
if output.end() != now {
t.Errorf("newAggregationFromPoints(%v).end() = %v, want %v", input, output.end(), now)
}
lvAgg, ok := output.(aggregation.LastValue)
if !ok {
t.Errorf("newAggregationFromPoints(%v) = %v does not implement the aggregation.Points interface", input, output)
}
num, endTime, err := lvAgg.LastValue()
if err != nil {
t.Fatalf("Unexpected err: %v", err)
}
if endTime != now {
t.Errorf("newAggregationFromPoints(%v).LastValue() = endTime: %v, want %v", input, endTime, now)
}
if num.AsInt64() != int64(-23) {
t.Errorf("newAggregationFromPoints(%v).LastValue() = number: %v, want %v", input, num.AsInt64(), int64(-23))
}
}
func TestHistogramAggregation(t *testing.T) {
now := time.Now()
input := []metricdata.Point{
{
Value: &metricdata.Distribution{
Count: 0,
Sum: 0,
BucketOptions: &metricdata.BucketOptions{
Bounds: []float64{20, 30},
},
Buckets: []metricdata.Bucket{
{Count: 0},
{Count: 0},
},
},
},
{
Time: now,
Value: &metricdata.Distribution{
Count: 2,
Sum: 55,
BucketOptions: &metricdata.BucketOptions{
Bounds: []float64{20, 30},
},
Buckets: []metricdata.Bucket{
{Count: 1},
{Count: 1},
},
},
},
}
output, err := newAggregationFromPoints(input)
if err != nil {
t.Fatalf("newAggregationFromPoints(%v) = err(%v), want <nil>", input, err)
}
if output.Kind() != aggregation.HistogramKind {
t.Errorf("newAggregationFromPoints(%v) = %v, want %v", input, output.Kind(), aggregation.HistogramKind)
}
if output.end() != now {
t.Errorf("newAggregationFromPoints(%v).end() = %v, want %v", input, output.end(), now)
}
distAgg, ok := output.(aggregation.Histogram)
if !ok {
t.Errorf("newAggregationFromPoints(%v) = %v does not implement the aggregation.Points interface", input, output)
}
sum, err := distAgg.Sum()
if err != nil {
t.Fatalf("Unexpected err: %v", err)
}
if sum.AsFloat64() != float64(55) {
t.Errorf("newAggregationFromPoints(%v).Sum() = %v, want %v", input, sum.AsFloat64(), float64(55))
}
count, err := distAgg.Count()
if err != nil {
t.Fatalf("Unexpected err: %v", err)
}
if count != 2 {
t.Errorf("newAggregationFromPoints(%v).Count() = %v, want %v", input, count, 2)
}
hist, err := distAgg.Histogram()
if err != nil {
t.Fatalf("Unexpected err: %v", err)
}
inputBucketBoundaries := []float64{20, 30}
if len(hist.Boundaries) != len(inputBucketBoundaries) {
t.Fatalf("newAggregationFromPoints(%v).Histogram() produced %d boundaries, want %d boundaries", input, len(hist.Boundaries), len(inputBucketBoundaries))
}
for i, b := range hist.Boundaries {
if b != inputBucketBoundaries[i] {
t.Errorf("newAggregationFromPoints(%v).Histogram().Boundaries[%d] = %v, want %v", input, i, b, inputBucketBoundaries[i])
}
}
inputBucketCounts := []uint64{1, 1}
if len(hist.Counts) != len(inputBucketCounts) {
t.Fatalf("newAggregationFromPoints(%v).Histogram() produced %d buckets, want %d buckets", input, len(hist.Counts), len(inputBucketCounts))
}
for i, c := range hist.Counts {
if c != inputBucketCounts[i] {
t.Errorf("newAggregationFromPoints(%v).Histogram().Counts[%d] = %d, want %d", input, i, c, inputBucketCounts[i])
}
}
}