1
0
mirror of https://github.com/immich-app/immich.git synced 2024-11-28 09:33:27 +02:00

refactor(ml): model downloading (#3545)

* download facial recognition models

* download hf models

* simplified logic

* updated `predict` for facial recognition

* ensure download method is called

* fixed repo_id for clip

* fixed download destination

* use st's own `snapshot_download`

* conditional download

* fixed predict method

* check if loaded

* minor fixes

* updated mypy overrides

* added pytest-mock

* updated tests

* updated lock
This commit is contained in:
Mert 2023-08-05 22:45:13 -04:00 committed by GitHub
parent 2f26a7edae
commit c73832bd9c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 350 additions and 274 deletions

View File

@ -20,7 +20,7 @@ class Settings(BaseSettings):
min_face_score: float = 0.7
test_full: bool = False
class Config(BaseSettings.Config):
class Config:
env_prefix = "MACHINE_LEARNING_"
case_sensitive = False

View File

@ -1,5 +1,4 @@
from types import SimpleNamespace
from typing import Any, Iterator, TypeAlias
from typing import Iterator, TypeAlias
from unittest import mock
import numpy as np
@ -22,91 +21,6 @@ def cv_image(pil_image: Image.Image) -> ndarray:
return np.asarray(pil_image)[:, :, ::-1] # PIL uses RGB while cv2 uses BGR
@pytest.fixture
def mock_classifier_pipeline() -> Iterator[mock.Mock]:
with mock.patch("app.models.image_classification.pipeline") as model:
classifier_preds = [
{"label": "that's an image alright", "score": 0.8},
{"label": "well it ends with .jpg", "score": 0.1},
{"label": "idk, im just seeing bytes", "score": 0.05},
{"label": "not sure", "score": 0.04},
{"label": "probably a virus", "score": 0.01},
]
def forward(
inputs: Image.Image | list[Image.Image], **kwargs: Any
) -> list[dict[str, Any]] | list[list[dict[str, Any]]]:
if isinstance(inputs, list) and not all([isinstance(img, Image.Image) for img in inputs]):
raise TypeError
elif not isinstance(inputs, Image.Image):
raise TypeError
if isinstance(inputs, list):
return [classifier_preds] * len(inputs)
return classifier_preds
model.return_value = forward
yield model
@pytest.fixture
def mock_st() -> Iterator[mock.Mock]:
with mock.patch("app.models.clip.SentenceTransformer") as model:
embedding = np.random.rand(512).astype(np.float32)
def encode(inputs: Image.Image | list[Image.Image], **kwargs: Any) -> ndarray | list[ndarray]:
# mypy complains unless isinstance(inputs, list) is used explicitly
img_batch = isinstance(inputs, list) and all([isinstance(inst, Image.Image) for inst in inputs])
text_batch = isinstance(inputs, list) and all([isinstance(inst, str) for inst in inputs])
if isinstance(inputs, list) and not any([img_batch, text_batch]):
raise TypeError
if isinstance(inputs, list):
return np.stack([embedding] * len(inputs))
return embedding
mocked = mock.Mock()
mocked.encode = encode
model.return_value = mocked
yield model
@pytest.fixture
def mock_faceanalysis() -> Iterator[mock.Mock]:
with mock.patch("app.models.facial_recognition.FaceAnalysis") as model:
face_preds = [
SimpleNamespace( # this is so these fields can be accessed through dot notation
**{
"bbox": np.random.rand(4).astype(np.float32),
"kps": np.random.rand(5, 2).astype(np.float32),
"det_score": np.array([0.67]).astype(np.float32),
"normed_embedding": np.random.rand(512).astype(np.float32),
}
),
SimpleNamespace(
**{
"bbox": np.random.rand(4).astype(np.float32),
"kps": np.random.rand(5, 2).astype(np.float32),
"det_score": np.array([0.4]).astype(np.float32),
"normed_embedding": np.random.rand(512).astype(np.float32),
}
),
]
def get(image: np.ndarray[int, np.dtype[np.float32]], **kwargs: Any) -> list[SimpleNamespace]:
if not isinstance(image, np.ndarray):
raise TypeError
return face_preds
mocked = mock.Mock()
mocked.get = get
model.return_value = mocked
yield model
@pytest.fixture
def mock_get_model() -> Iterator[mock.Mock]:
with mock.patch("app.models.cache.InferenceModel.from_model_type", autospec=True) as mocked:

View File

@ -9,7 +9,6 @@ from fastapi import Body, Depends, FastAPI
from PIL import Image
from .config import settings
from .models.base import InferenceModel
from .models.cache import ModelCache
from .schemas import (
EmbeddingResponse,
@ -38,10 +37,7 @@ async def load_models() -> None:
# Get all models
for model_name, model_type in models:
if settings.eager_startup:
await app.state.model_cache.get(model_name, model_type)
else:
InferenceModel.from_model_type(model_type, model_name)
await app.state.model_cache.get(model_name, model_type, eager=settings.eager_startup)
@app.on_event("startup")

View File

@ -14,22 +14,43 @@ from ..schemas import ModelType
class InferenceModel(ABC):
_model_type: ModelType
def __init__(self, model_name: str, cache_dir: Path | str | None = None, **model_kwargs: Any) -> None:
def __init__(
self, model_name: str, cache_dir: Path | str | None = None, eager: bool = True, **model_kwargs: Any
) -> None:
self.model_name = model_name
self._loaded = False
self._cache_dir = Path(cache_dir) if cache_dir is not None else get_cache_dir(model_name, self.model_type)
loader = self.load if eager else self.download
try:
self.load(**model_kwargs)
loader(**model_kwargs)
except (OSError, InvalidProtobuf):
self.clear_cache()
self.load(**model_kwargs)
loader(**model_kwargs)
def download(self, **model_kwargs: Any) -> None:
if not self.cached:
self._download(**model_kwargs)
def load(self, **model_kwargs: Any) -> None:
self.download(**model_kwargs)
self._load(**model_kwargs)
self._loaded = True
def predict(self, inputs: Any) -> Any:
if not self._loaded:
self.load()
return self._predict(inputs)
@abstractmethod
def load(self, **model_kwargs: Any) -> None:
def _predict(self, inputs: Any) -> Any:
...
@abstractmethod
def predict(self, inputs: Any) -> Any:
def _download(self, **model_kwargs: Any) -> None:
...
@abstractmethod
def _load(self, **model_kwargs: Any) -> None:
...
@property
@ -44,6 +65,10 @@ class InferenceModel(ABC):
def cache_dir(self, cache_dir: Path) -> None:
self._cache_dir = cache_dir
@property
def cached(self) -> bool:
return self.cache_dir.exists() and any(self.cache_dir.iterdir())
@classmethod
def from_model_type(cls, model_type: ModelType, model_name: str, **model_kwargs: Any) -> InferenceModel:
subclasses = {subclass._model_type: subclass for subclass in cls.__subclasses__()}
@ -55,7 +80,11 @@ class InferenceModel(ABC):
def clear_cache(self) -> None:
if not self.cache_dir.exists():
return
elif not rmtree.avoids_symlink_attacks:
if not rmtree.avoids_symlink_attacks:
raise RuntimeError("Attempted to clear cache, but rmtree is not safe on this platform.")
if self.cache_dir.is_dir():
rmtree(self.cache_dir)
else:
self.cache_dir.unlink()
self.cache_dir.mkdir(parents=True, exist_ok=True)

View File

@ -1,8 +1,8 @@
from pathlib import Path
from typing import Any
from PIL.Image import Image
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import snapshot_download
from ..schemas import ModelType
from .base import InferenceModel
@ -11,12 +11,21 @@ from .base import InferenceModel
class CLIPSTEncoder(InferenceModel):
_model_type = ModelType.CLIP
def load(self, **model_kwargs: Any) -> None:
def _download(self, **model_kwargs: Any) -> None:
repo_id = self.model_name if "/" in self.model_name else f"sentence-transformers/{self.model_name}"
snapshot_download(
cache_dir=self.cache_dir,
repo_id=repo_id,
library_name="sentence-transformers",
ignore_files=["flax_model.msgpack", "rust_model.ot", "tf_model.h5"],
)
def _load(self, **model_kwargs: Any) -> None:
self.model = SentenceTransformer(
self.model_name,
cache_folder=self.cache_dir.as_posix(),
**model_kwargs,
)
def predict(self, image_or_text: Image | str) -> list[float]:
def _predict(self, image_or_text: Image | str) -> list[float]:
return self.model.encode(image_or_text).tolist()

View File

@ -1,8 +1,12 @@
import zipfile
from pathlib import Path
from typing import Any
import cv2
from insightface.app import FaceAnalysis
import numpy as np
from insightface.model_zoo import ArcFaceONNX, RetinaFace
from insightface.utils.face_align import norm_crop
from insightface.utils.storage import BASE_REPO_URL, download_file
from ..config import settings
from ..schemas import ModelType
@ -22,39 +26,62 @@ class FaceRecognizer(InferenceModel):
self.min_score = min_score
super().__init__(model_name, cache_dir, **model_kwargs)
def load(self, **model_kwargs: Any) -> None:
self.model = FaceAnalysis(
name=self.model_name,
root=self.cache_dir.as_posix(),
allowed_modules=["detection", "recognition"],
**model_kwargs,
)
self.model.prepare(
ctx_id=0,
def _download(self, **model_kwargs: Any) -> None:
zip_file = self.cache_dir / f"{self.model_name}.zip"
download_file(f"{BASE_REPO_URL}/{self.model_name}.zip", zip_file)
with zipfile.ZipFile(zip_file, "r") as zip:
members = zip.namelist()
det_file = next(model for model in members if model.startswith("det_"))
rec_file = next(model for model in members if model.startswith("w600k_"))
zip.extractall(self.cache_dir, members=[det_file, rec_file])
zip_file.unlink()
def _load(self, **model_kwargs: Any) -> None:
try:
det_file = next(self.cache_dir.glob("det_*.onnx"))
rec_file = next(self.cache_dir.glob("w600k_*.onnx"))
except StopIteration:
raise FileNotFoundError("Facial recognition models not found in cache directory")
self.det_model = RetinaFace(det_file.as_posix())
self.rec_model = ArcFaceONNX(rec_file.as_posix())
self.det_model.prepare(
ctx_id=-1,
det_thresh=self.min_score,
det_size=(640, 640),
input_size=(640, 640),
)
self.rec_model.prepare(ctx_id=-1)
def _predict(self, image: cv2.Mat) -> list[dict[str, Any]]:
bboxes, kpss = self.det_model.detect(image)
if bboxes.size == 0:
return []
assert isinstance(kpss, np.ndarray)
scores = bboxes[:, 4].tolist()
bboxes = bboxes[:, :4].round().tolist()
def predict(self, image: cv2.Mat) -> list[dict[str, Any]]:
height, width, _ = image.shape
results = []
faces = self.model.get(image)
for face in faces:
x1, y1, x2, y2 = face.bbox
height, width, _ = image.shape
for (x1, y1, x2, y2), score, kps in zip(bboxes, scores, kpss):
cropped_img = norm_crop(image, kps)
embedding = self.rec_model.get_feat(cropped_img)[0].tolist()
results.append(
{
"imageWidth": width,
"imageHeight": height,
"boundingBox": {
"x1": round(x1),
"y1": round(y1),
"x2": round(x2),
"y2": round(y2),
"x1": x1,
"y1": y1,
"x2": x2,
"y2": y2,
},
"score": face.det_score.item(),
"embedding": face.normed_embedding.tolist(),
"score": score,
"embedding": embedding,
}
)
return results
@property
def cached(self) -> bool:
return self.cache_dir.is_dir() and any(self.cache_dir.glob("*.onnx"))

View File

@ -1,6 +1,7 @@
from pathlib import Path
from typing import Any
from huggingface_hub import snapshot_download
from PIL.Image import Image
from transformers.pipelines import pipeline
@ -22,14 +23,19 @@ class ImageClassifier(InferenceModel):
self.min_score = min_score
super().__init__(model_name, cache_dir, **model_kwargs)
def load(self, **model_kwargs: Any) -> None:
def _download(self, **model_kwargs: Any) -> None:
snapshot_download(
cache_dir=self.cache_dir, repo_id=self.model_name, allow_patterns=["*.bin", "*.json", "*.txt"]
)
def _load(self, **model_kwargs: Any) -> None:
self.model = pipeline(
self.model_type.value,
self.model_name,
model_kwargs={"cache_dir": self.cache_dir, **model_kwargs},
)
def predict(self, image: Image) -> list[str]:
def _predict(self, image: Image) -> list[str]:
predictions: list[dict[str, Any]] = self.model(image) # type: ignore
tags = [tag for pred in predictions for tag in pred["label"].split(", ") if pred["score"] >= self.min_score]

View File

@ -1,11 +1,13 @@
from io import BytesIO
from pathlib import Path
from typing import TypeAlias
from unittest import mock
import cv2
import numpy as np
import pytest
from fastapi.testclient import TestClient
from PIL import Image
from pytest_mock import MockerFixture
from .config import settings
from .models.cache import ModelCache
@ -14,22 +16,43 @@ from .models.facial_recognition import FaceRecognizer
from .models.image_classification import ImageClassifier
from .schemas import ModelType
ndarray: TypeAlias = np.ndarray[int, np.dtype[np.float32]]
class TestImageClassifier:
def test_init(self, mock_classifier_pipeline: mock.Mock) -> None:
cache_dir = Path("test_cache")
classifier = ImageClassifier("test_model_name", 0.5, cache_dir=cache_dir)
classifier_preds = [
{"label": "that's an image alright", "score": 0.8},
{"label": "well it ends with .jpg", "score": 0.1},
{"label": "idk, im just seeing bytes", "score": 0.05},
{"label": "not sure", "score": 0.04},
{"label": "probably a virus", "score": 0.01},
]
assert classifier.min_score == 0.5
mock_classifier_pipeline.assert_called_once_with(
"image-classification",
"test_model_name",
model_kwargs={"cache_dir": cache_dir},
)
def test_eager_init(self, mocker: MockerFixture) -> None:
mocker.patch.object(ImageClassifier, "download")
mock_load = mocker.patch.object(ImageClassifier, "load")
classifier = ImageClassifier("test_model_name", cache_dir="test_cache", eager=True, test_arg="test_arg")
def test_min_score(self, pil_image: Image.Image, mock_classifier_pipeline: mock.Mock) -> None:
assert classifier.model_name == "test_model_name"
mock_load.assert_called_once_with(test_arg="test_arg")
def test_lazy_init(self, mocker: MockerFixture) -> None:
mock_download = mocker.patch.object(ImageClassifier, "download")
mock_load = mocker.patch.object(ImageClassifier, "load")
face_model = ImageClassifier("test_model_name", cache_dir="test_cache", eager=False, test_arg="test_arg")
assert face_model.model_name == "test_model_name"
mock_download.assert_called_once_with(test_arg="test_arg")
mock_load.assert_not_called()
def test_min_score(self, pil_image: Image.Image, mocker: MockerFixture) -> None:
mocker.patch.object(ImageClassifier, "load")
classifier = ImageClassifier("test_model_name", min_score=0.0)
classifier.min_score = 0.0
assert classifier.min_score == 0.0
classifier.model = mock.Mock()
classifier.model.return_value = self.classifier_preds
all_labels = classifier.predict(pil_image)
classifier.min_score = 0.5
filtered_labels = classifier.predict(pil_image)
@ -46,45 +69,94 @@ class TestImageClassifier:
class TestCLIP:
def test_init(self, mock_st: mock.Mock) -> None:
CLIPSTEncoder("test_model_name", cache_dir="test_cache")
embedding = np.random.rand(512).astype(np.float32)
mock_st.assert_called_once_with("test_model_name", cache_folder="test_cache")
def test_eager_init(self, mocker: MockerFixture) -> None:
mocker.patch.object(CLIPSTEncoder, "download")
mock_load = mocker.patch.object(CLIPSTEncoder, "load")
clip_model = CLIPSTEncoder("test_model_name", cache_dir="test_cache", eager=True, test_arg="test_arg")
def test_basic_image(self, pil_image: Image.Image, mock_st: mock.Mock) -> None:
assert clip_model.model_name == "test_model_name"
mock_load.assert_called_once_with(test_arg="test_arg")
def test_lazy_init(self, mocker: MockerFixture) -> None:
mock_download = mocker.patch.object(CLIPSTEncoder, "download")
mock_load = mocker.patch.object(CLIPSTEncoder, "load")
clip_model = CLIPSTEncoder("test_model_name", cache_dir="test_cache", eager=False, test_arg="test_arg")
assert clip_model.model_name == "test_model_name"
mock_download.assert_called_once_with(test_arg="test_arg")
mock_load.assert_not_called()
def test_basic_image(self, pil_image: Image.Image, mocker: MockerFixture) -> None:
mocker.patch.object(CLIPSTEncoder, "load")
clip_encoder = CLIPSTEncoder("test_model_name", cache_dir="test_cache")
clip_encoder.model = mock.Mock()
clip_encoder.model.encode.return_value = self.embedding
embedding = clip_encoder.predict(pil_image)
assert isinstance(embedding, list)
assert len(embedding) == 512
assert all([isinstance(num, float) for num in embedding])
mock_st.assert_called_once()
clip_encoder.model.encode.assert_called_once()
def test_basic_text(self, mock_st: mock.Mock) -> None:
def test_basic_text(self, mocker: MockerFixture) -> None:
mocker.patch.object(CLIPSTEncoder, "load")
clip_encoder = CLIPSTEncoder("test_model_name", cache_dir="test_cache")
clip_encoder.model = mock.Mock()
clip_encoder.model.encode.return_value = self.embedding
embedding = clip_encoder.predict("test search query")
assert isinstance(embedding, list)
assert len(embedding) == 512
assert all([isinstance(num, float) for num in embedding])
mock_st.assert_called_once()
clip_encoder.model.encode.assert_called_once()
class TestFaceRecognition:
def test_init(self, mock_faceanalysis: mock.Mock) -> None:
FaceRecognizer("test_model_name", cache_dir="test_cache")
def test_eager_init(self, mocker: MockerFixture) -> None:
mocker.patch.object(FaceRecognizer, "download")
mock_load = mocker.patch.object(FaceRecognizer, "load")
face_model = FaceRecognizer("test_model_name", cache_dir="test_cache", eager=True, test_arg="test_arg")
mock_faceanalysis.assert_called_once_with(
name="test_model_name",
root="test_cache",
allowed_modules=["detection", "recognition"],
)
assert face_model.model_name == "test_model_name"
mock_load.assert_called_once_with(test_arg="test_arg")
def test_basic(self, cv_image: cv2.Mat, mock_faceanalysis: mock.Mock) -> None:
def test_lazy_init(self, mocker: MockerFixture) -> None:
mock_download = mocker.patch.object(FaceRecognizer, "download")
mock_load = mocker.patch.object(FaceRecognizer, "load")
face_model = FaceRecognizer("test_model_name", cache_dir="test_cache", eager=False, test_arg="test_arg")
assert face_model.model_name == "test_model_name"
mock_download.assert_called_once_with(test_arg="test_arg")
mock_load.assert_not_called()
def test_set_min_score(self, mocker: MockerFixture) -> None:
mocker.patch.object(FaceRecognizer, "load")
face_recognizer = FaceRecognizer("test_model_name", cache_dir="test_cache", min_score=0.5)
assert face_recognizer.min_score == 0.5
def test_basic(self, cv_image: cv2.Mat, mocker: MockerFixture) -> None:
mocker.patch.object(FaceRecognizer, "load")
face_recognizer = FaceRecognizer("test_model_name", min_score=0.0, cache_dir="test_cache")
det_model = mock.Mock()
num_faces = 2
bbox = np.random.rand(num_faces, 4).astype(np.float32)
score = np.array([[0.67]] * num_faces).astype(np.float32)
kpss = np.random.rand(num_faces, 5, 2).astype(np.float32)
det_model.detect.return_value = (np.concatenate([bbox, score], axis=-1), kpss)
face_recognizer.det_model = det_model
rec_model = mock.Mock()
embedding = np.random.rand(num_faces, 512).astype(np.float32)
rec_model.get_feat.return_value = embedding
face_recognizer.rec_model = rec_model
faces = face_recognizer.predict(cv_image)
assert len(faces) == 2
assert len(faces) == num_faces
for face in faces:
assert face["imageHeight"] == 800
assert face["imageWidth"] == 600
@ -92,7 +164,8 @@ class TestFaceRecognition:
assert len(face["embedding"]) == 512
assert all([isinstance(num, float) for num in face["embedding"]])
mock_faceanalysis.assert_called_once()
det_model.detect.assert_called_once()
assert rec_model.get_feat.call_count == num_faces
@pytest.mark.asyncio

View File

@ -421,13 +421,13 @@ cron = ["capturer (>=2.4)"]
[[package]]
name = "configargparse"
version = "1.5.5"
version = "1.7"
description = "A drop-in replacement for argparse that allows options to also be set via config files and/or environment variables."
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
python-versions = ">=3.5"
files = [
{file = "ConfigArgParse-1.5.5-py3-none-any.whl", hash = "sha256:541360ddc1b15c517f95c0d02d1fca4591266628f3667acdc5d13dccc78884ca"},
{file = "ConfigArgParse-1.5.5.tar.gz", hash = "sha256:363d80a6d35614bd446e2f2b1b216f3b33741d03ac6d0a92803306f40e555b58"},
{file = "ConfigArgParse-1.7-py3-none-any.whl", hash = "sha256:d249da6591465c6c26df64a9f73d2536e743be2f244eb3ebe61114af2f94f86b"},
{file = "ConfigArgParse-1.7.tar.gz", hash = "sha256:e7067471884de5478c58a511e529f0f9bd1c66bfef1dea90935438d6c23306d1"},
]
[package.extras]
@ -750,45 +750,45 @@ files = [
[[package]]
name = "fonttools"
version = "4.41.1"
version = "4.42.0"
description = "Tools to manipulate font files"
optional = false
python-versions = ">=3.8"
files = [
{file = "fonttools-4.41.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a7bbb290d13c6dd718ec2c3db46fe6c5f6811e7ea1e07f145fd8468176398224"},
{file = "fonttools-4.41.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ec453a45778524f925a8f20fd26a3326f398bfc55d534e37bab470c5e415caa1"},
{file = "fonttools-4.41.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c2071267deaa6d93cb16288613419679c77220543551cbe61da02c93d92df72f"},
{file = "fonttools-4.41.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4e3334d51f0e37e2c6056e67141b2adabc92613a968797e2571ca8a03bd64773"},
{file = "fonttools-4.41.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:cac73bbef7734e78c60949da11c4903ee5837168e58772371bd42a75872f4f82"},
{file = "fonttools-4.41.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:edee0900cf0eedb29d17c7876102d6e5a91ee333882b1f5abc83e85b934cadb5"},
{file = "fonttools-4.41.1-cp310-cp310-win32.whl", hash = "sha256:2a22b2c425c698dcd5d6b0ff0b566e8e9663172118db6fd5f1941f9b8063da9b"},
{file = "fonttools-4.41.1-cp310-cp310-win_amd64.whl", hash = "sha256:547ab36a799dded58a46fa647266c24d0ed43a66028cd1cd4370b246ad426cac"},
{file = "fonttools-4.41.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:849ec722bbf7d3501a0e879e57dec1fc54919d31bff3f690af30bb87970f9784"},
{file = "fonttools-4.41.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:38cdecd8f1fd4bf4daae7fed1b3170dfc1b523388d6664b2204b351820aa78a7"},
{file = "fonttools-4.41.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ae64303ba670f8959fdaaa30ba0c2dabe75364fdec1caeee596c45d51ca3425"},
{file = "fonttools-4.41.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f14f3ccea4cc7dd1b277385adf3c3bf18f9860f87eab9c2fb650b0af16800f55"},
{file = "fonttools-4.41.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:33191f062549e6bb1a4782c22a04ebd37009c09360e2d6686ac5083774d06d95"},
{file = "fonttools-4.41.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:704bccd69b0abb6fab9f5e4d2b75896afa48b427caa2c7988792a2ffce35b441"},
{file = "fonttools-4.41.1-cp311-cp311-win32.whl", hash = "sha256:4edc795533421e98f60acee7d28fc8d941ff5ac10f44668c9c3635ad72ae9045"},
{file = "fonttools-4.41.1-cp311-cp311-win_amd64.whl", hash = "sha256:aaaef294d8e411f0ecb778a0aefd11bb5884c9b8333cc1011bdaf3b58ca4bd75"},
{file = "fonttools-4.41.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:3d1f9471134affc1e3b1b806db6e3e2ad3fa99439e332f1881a474c825101096"},
{file = "fonttools-4.41.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:59eba8b2e749a1de85760da22333f3d17c42b66e03758855a12a2a542723c6e7"},
{file = "fonttools-4.41.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a9b3cc10dc9e0834b6665fd63ae0c6964c6bc3d7166e9bc84772e0edd09f9fa2"},
{file = "fonttools-4.41.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da2c2964bdc827ba6b8a91dc6de792620be4da3922c4cf0599f36a488c07e2b2"},
{file = "fonttools-4.41.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:7763316111df7b5165529f4183a334aa24c13cdb5375ffa1dc8ce309c8bf4e5c"},
{file = "fonttools-4.41.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b2d1ee95be42b80d1f002d1ee0a51d7a435ea90d36f1a5ae331be9962ee5a3f1"},
{file = "fonttools-4.41.1-cp38-cp38-win32.whl", hash = "sha256:f48602c0b3fd79cd83a34c40af565fe6db7ac9085c8823b552e6e751e3a5b8be"},
{file = "fonttools-4.41.1-cp38-cp38-win_amd64.whl", hash = "sha256:b0938ebbeccf7c80bb9a15e31645cf831572c3a33d5cc69abe436e7000c61b14"},
{file = "fonttools-4.41.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e5c2b0a95a221838991e2f0e455dec1ca3a8cc9cd54febd68cc64d40fdb83669"},
{file = "fonttools-4.41.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:891cfc5a83b0307688f78b9bb446f03a7a1ad981690ac8362f50518bc6153975"},
{file = "fonttools-4.41.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:73ef0bb5d60eb02ba4d3a7d23ada32184bd86007cb2de3657cfcb1175325fc83"},
{file = "fonttools-4.41.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f240d9adf0583ac8fc1646afe7f4ac039022b6f8fa4f1575a2cfa53675360b69"},
{file = "fonttools-4.41.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bdd729744ae7ecd7f7311ad25d99da4999003dcfe43b436cf3c333d4e68de73d"},
{file = "fonttools-4.41.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b927e5f466d99c03e6e20961946314b81d6e3490d95865ef88061144d9f62e38"},
{file = "fonttools-4.41.1-cp39-cp39-win32.whl", hash = "sha256:afce2aeb80be72b4da7dd114f10f04873ff512793d13ce0b19d12b2a4c44c0f0"},
{file = "fonttools-4.41.1-cp39-cp39-win_amd64.whl", hash = "sha256:1df1b6f4c7c4bc8201eb47f3b268adbf2539943aa43c400f84556557e3e109c0"},
{file = "fonttools-4.41.1-py3-none-any.whl", hash = "sha256:952cb405f78734cf6466252fec42e206450d1a6715746013f64df9cbd4f896fa"},
{file = "fonttools-4.41.1.tar.gz", hash = "sha256:e16a9449f21a93909c5be2f5ed5246420f2316e94195dbfccb5238aaa38f9751"},
{file = "fonttools-4.42.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:9c456d1f23deff64ffc8b5b098718e149279abdea4d8692dba69172fb6a0d597"},
{file = "fonttools-4.42.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:150122ed93127a26bc3670ebab7e2add1e0983d30927733aec327ebf4255b072"},
{file = "fonttools-4.42.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48e82d776d2e93f88ca56567509d102266e7ab2fb707a0326f032fe657335238"},
{file = "fonttools-4.42.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58c1165f9b2662645de9b19a8c8bdd636b36294ccc07e1b0163856b74f10bafc"},
{file = "fonttools-4.42.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:2d6dc3fa91414ff4daa195c05f946e6a575bd214821e26d17ca50f74b35b0fe4"},
{file = "fonttools-4.42.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fae4e801b774cc62cecf4a57b1eae4097903fced00c608d9e2bc8f84cd87b54a"},
{file = "fonttools-4.42.0-cp310-cp310-win32.whl", hash = "sha256:b8600ae7dce6ec3ddfb201abb98c9d53abbf8064d7ac0c8a0d8925e722ccf2a0"},
{file = "fonttools-4.42.0-cp310-cp310-win_amd64.whl", hash = "sha256:57b68eab183fafac7cd7d464a7bfa0fcd4edf6c67837d14fb09c1c20516cf20b"},
{file = "fonttools-4.42.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:0a1466713e54bdbf5521f2f73eebfe727a528905ff5ec63cda40961b4b1eea95"},
{file = "fonttools-4.42.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3fb2a69870bfe143ec20b039a1c8009e149dd7780dd89554cc8a11f79e5de86b"},
{file = "fonttools-4.42.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ae881e484702efdb6cf756462622de81d4414c454edfd950b137e9a7352b3cb9"},
{file = "fonttools-4.42.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:27ec3246a088555629f9f0902f7412220c67340553ca91eb540cf247aacb1983"},
{file = "fonttools-4.42.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:8ece1886d12bb36c48c00b2031518877f41abae317e3a55620d38e307d799b7e"},
{file = "fonttools-4.42.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:10dac980f2b975ef74532e2a94bb00e97a95b4595fb7f98db493c474d5f54d0e"},
{file = "fonttools-4.42.0-cp311-cp311-win32.whl", hash = "sha256:83b98be5d291e08501bd4fc0c4e0f8e6e05b99f3924068b17c5c9972af6fff84"},
{file = "fonttools-4.42.0-cp311-cp311-win_amd64.whl", hash = "sha256:e35bed436726194c5e6e094fdfb423fb7afaa0211199f9d245e59e11118c576c"},
{file = "fonttools-4.42.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c36c904ce0322df01e590ba814d5d69e084e985d7e4c2869378671d79662a7d4"},
{file = "fonttools-4.42.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d54e600a2bcfa5cdaa860237765c01804a03b08404d6affcd92942fa7315ffba"},
{file = "fonttools-4.42.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:01cfe02416b6d416c5c8d15e30315cbcd3e97d1b50d3b34b0ce59f742ef55258"},
{file = "fonttools-4.42.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f81ed9065b4bd3f4f3ce8e4873cd6a6b3f4e92b1eddefde35d332c6f414acc3"},
{file = "fonttools-4.42.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:685a4dd6cf31593b50d6d441feb7781a4a7ef61e19551463e14ed7c527b86f9f"},
{file = "fonttools-4.42.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:329341ba3d86a36e482610db56b30705384cb23bd595eac8cbb045f627778e9d"},
{file = "fonttools-4.42.0-cp38-cp38-win32.whl", hash = "sha256:4655c480a1a4d706152ff54f20e20cf7609084016f1df3851cce67cef768f40a"},
{file = "fonttools-4.42.0-cp38-cp38-win_amd64.whl", hash = "sha256:6bd7e4777bff1dcb7c4eff4786998422770f3bfbef8be401c5332895517ba3fa"},
{file = "fonttools-4.42.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a9b55d2a3b360e0c7fc5bd8badf1503ca1c11dd3a1cd20f2c26787ffa145a9c7"},
{file = "fonttools-4.42.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0df8ef75ba5791e873c9eac2262196497525e3f07699a2576d3ab9ddf41cb619"},
{file = "fonttools-4.42.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cd2363ea7728496827658682d049ffb2e98525e2247ca64554864a8cc945568"},
{file = "fonttools-4.42.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d40673b2e927f7cd0819c6f04489dfbeb337b4a7b10fc633c89bf4f34ecb9620"},
{file = "fonttools-4.42.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c8bf88f9e3ce347c716921804ef3a8330cb128284eb6c0b6c4b3574f3c580023"},
{file = "fonttools-4.42.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:703101eb0490fae32baf385385d47787b73d9ea55253df43b487c89ec767e0d7"},
{file = "fonttools-4.42.0-cp39-cp39-win32.whl", hash = "sha256:f0290ea7f9945174bd4dfd66e96149037441eb2008f3649094f056201d99e293"},
{file = "fonttools-4.42.0-cp39-cp39-win_amd64.whl", hash = "sha256:ae7df0ae9ee2f3f7676b0ff6f4ebe48ad0acaeeeaa0b6839d15dbf0709f2c5ef"},
{file = "fonttools-4.42.0-py3-none-any.whl", hash = "sha256:dfe7fa7e607f7e8b58d0c32501a3a7cac148538300626d1b930082c90ae7f6bd"},
{file = "fonttools-4.42.0.tar.gz", hash = "sha256:614b1283dca88effd20ee48160518e6de275ce9b5456a3134d5f235523fc5065"},
]
[package.extras]
@ -1525,13 +1525,13 @@ test = ["pytest (>=7.4)", "pytest-cov (>=4.1)"]
[[package]]
name = "locust"
version = "2.15.1"
version = "2.16.1"
description = "Developer friendly load testing framework"
optional = false
python-versions = ">=3.7"
files = [
{file = "locust-2.15.1-py3-none-any.whl", hash = "sha256:9e0bb30b4962f9c9611174df0fdea2a4e3f41656b36dc7b0a1a46f618a83d5a9"},
{file = "locust-2.15.1.tar.gz", hash = "sha256:a6307f3bf995c180f66e7caed94360b8c8ed95d64dca508614d803d5b0b39f15"},
{file = "locust-2.16.1-py3-none-any.whl", hash = "sha256:d0f01f9fca6a7d9be987b32185799d9e219fce3b9a3b8250ea03e88003335804"},
{file = "locust-2.16.1.tar.gz", hash = "sha256:cd54f179b679ae927e9b3ffd2b6a7c89c1078103cfbe96b4dd53c7872774b619"},
]
[package.dependencies]
@ -1860,36 +1860,36 @@ twitter = ["twython"]
[[package]]
name = "numpy"
version = "1.25.1"
version = "1.25.2"
description = "Fundamental package for array computing in Python"
optional = false
python-versions = ">=3.9"
files = [
{file = "numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:77d339465dff3eb33c701430bcb9c325b60354698340229e1dff97745e6b3efa"},
{file = "numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d736b75c3f2cb96843a5c7f8d8ccc414768d34b0a75f466c05f3a739b406f10b"},
{file = "numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a90725800caeaa160732d6b31f3f843ebd45d6b5f3eec9e8cc287e30f2805bf"},
{file = "numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c6c9261d21e617c6dc5eacba35cb68ec36bb72adcff0dee63f8fbc899362588"},
{file = "numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0def91f8af6ec4bb94c370e38c575855bf1d0be8a8fbfba42ef9c073faf2cf19"},
{file = "numpy-1.25.1-cp310-cp310-win32.whl", hash = "sha256:fd67b306320dcadea700a8f79b9e671e607f8696e98ec255915c0c6d6b818503"},
{file = "numpy-1.25.1-cp310-cp310-win_amd64.whl", hash = "sha256:c1516db588987450b85595586605742879e50dcce923e8973f79529651545b57"},
{file = "numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6b82655dd8efeea69dbf85d00fca40013d7f503212bc5259056244961268b66e"},
{file = "numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e8f6049c4878cb16960fbbfb22105e49d13d752d4d8371b55110941fb3b17800"},
{file = "numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41a56b70e8139884eccb2f733c2f7378af06c82304959e174f8e7370af112e09"},
{file = "numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d5154b1a25ec796b1aee12ac1b22f414f94752c5f94832f14d8d6c9ac40bcca6"},
{file = "numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:38eb6548bb91c421261b4805dc44def9ca1a6eef6444ce35ad1669c0f1a3fc5d"},
{file = "numpy-1.25.1-cp311-cp311-win32.whl", hash = "sha256:791f409064d0a69dd20579345d852c59822c6aa087f23b07b1b4e28ff5880fcb"},
{file = "numpy-1.25.1-cp311-cp311-win_amd64.whl", hash = "sha256:c40571fe966393b212689aa17e32ed905924120737194b5d5c1b20b9ed0fb171"},
{file = "numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3d7abcdd85aea3e6cdddb59af2350c7ab1ed764397f8eec97a038ad244d2d105"},
{file = "numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1a180429394f81c7933634ae49b37b472d343cccb5bb0c4a575ac8bbc433722f"},
{file = "numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d412c1697c3853c6fc3cb9751b4915859c7afe6a277c2bf00acf287d56c4e625"},
{file = "numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20e1266411120a4f16fad8efa8e0454d21d00b8c7cee5b5ccad7565d95eb42dd"},
{file = "numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:f76aebc3358ade9eacf9bc2bb8ae589863a4f911611694103af05346637df1b7"},
{file = "numpy-1.25.1-cp39-cp39-win32.whl", hash = "sha256:247d3ffdd7775bdf191f848be8d49100495114c82c2bd134e8d5d075fb386a1c"},
{file = "numpy-1.25.1-cp39-cp39-win_amd64.whl", hash = "sha256:1d5d3c68e443c90b38fdf8ef40e60e2538a27548b39b12b73132456847f4b631"},
{file = "numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:35a9527c977b924042170a0887de727cd84ff179e478481404c5dc66b4170009"},
{file = "numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d3fe3dd0506a28493d82dc3cf254be8cd0d26f4008a417385cbf1ae95b54004"},
{file = "numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:012097b5b0d00a11070e8f2e261128c44157a8689f7dedcf35576e525893f4fe"},
{file = "numpy-1.25.1.tar.gz", hash = "sha256:9a3a9f3a61480cc086117b426a8bd86869c213fc4072e606f01c4e4b66eb92bf"},
{file = "numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:db3ccc4e37a6873045580d413fe79b68e47a681af8db2e046f1dacfa11f86eb3"},
{file = "numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:90319e4f002795ccfc9050110bbbaa16c944b1c37c0baeea43c5fb881693ae1f"},
{file = "numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dfe4a913e29b418d096e696ddd422d8a5d13ffba4ea91f9f60440a3b759b0187"},
{file = "numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f08f2e037bba04e707eebf4bc934f1972a315c883a9e0ebfa8a7756eabf9e357"},
{file = "numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bec1e7213c7cb00d67093247f8c4db156fd03075f49876957dca4711306d39c9"},
{file = "numpy-1.25.2-cp310-cp310-win32.whl", hash = "sha256:7dc869c0c75988e1c693d0e2d5b26034644399dd929bc049db55395b1379e044"},
{file = "numpy-1.25.2-cp310-cp310-win_amd64.whl", hash = "sha256:834b386f2b8210dca38c71a6e0f4fd6922f7d3fcff935dbe3a570945acb1b545"},
{file = "numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c5462d19336db4560041517dbb7759c21d181a67cb01b36ca109b2ae37d32418"},
{file = "numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c5652ea24d33585ea39eb6a6a15dac87a1206a692719ff45d53c5282e66d4a8f"},
{file = "numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d60fbae8e0019865fc4784745814cff1c421df5afee233db6d88ab4f14655a2"},
{file = "numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60e7f0f7f6d0eee8364b9a6304c2845b9c491ac706048c7e8cf47b83123b8dbf"},
{file = "numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:bb33d5a1cf360304754913a350edda36d5b8c5331a8237268c48f91253c3a364"},
{file = "numpy-1.25.2-cp311-cp311-win32.whl", hash = "sha256:5883c06bb92f2e6c8181df7b39971a5fb436288db58b5a1c3967702d4278691d"},
{file = "numpy-1.25.2-cp311-cp311-win_amd64.whl", hash = "sha256:5c97325a0ba6f9d041feb9390924614b60b99209a71a69c876f71052521d42a4"},
{file = "numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b79e513d7aac42ae918db3ad1341a015488530d0bb2a6abcbdd10a3a829ccfd3"},
{file = "numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:eb942bfb6f84df5ce05dbf4b46673ffed0d3da59f13635ea9b926af3deb76926"},
{file = "numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e0746410e73384e70d286f93abf2520035250aad8c5714240b0492a7302fdca"},
{file = "numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7806500e4f5bdd04095e849265e55de20d8cc4b661b038957354327f6d9b295"},
{file = "numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8b77775f4b7df768967a7c8b3567e309f617dd5e99aeb886fa14dc1a0791141f"},
{file = "numpy-1.25.2-cp39-cp39-win32.whl", hash = "sha256:2792d23d62ec51e50ce4d4b7d73de8f67a2fd3ea710dcbc8563a51a03fb07b01"},
{file = "numpy-1.25.2-cp39-cp39-win_amd64.whl", hash = "sha256:76b4115d42a7dfc5d485d358728cdd8719be33cc5ec6ec08632a5d6fca2ed380"},
{file = "numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:1a1329e26f46230bf77b02cc19e900db9b52f398d6722ca853349a782d4cff55"},
{file = "numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c3abc71e8b6edba80a01a52e66d83c5d14433cbcd26a40c329ec7ed09f37901"},
{file = "numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:1b9735c27cea5d995496f46a8b1cd7b408b3f34b6d50459d9ac8fe3a20cc17bf"},
{file = "numpy-1.25.2.tar.gz", hash = "sha256:fd608e19c8d7c55021dffd43bfe5492fab8cc105cc8986f813f8c3c048b38760"},
]
[[package]]
@ -2020,13 +2020,13 @@ files = [
[[package]]
name = "pathspec"
version = "0.11.1"
version = "0.11.2"
description = "Utility library for gitignore style pattern matching of file paths."
optional = false
python-versions = ">=3.7"
files = [
{file = "pathspec-0.11.1-py3-none-any.whl", hash = "sha256:d8af70af76652554bd134c22b3e8a1cc46ed7d91edcdd721ef1a0c51a84a5293"},
{file = "pathspec-0.11.1.tar.gz", hash = "sha256:2798de800fa92780e33acca925945e9a19a133b715067cf165b8866c15a31687"},
{file = "pathspec-0.11.2-py3-none-any.whl", hash = "sha256:1d6ed233af05e679efb96b1851550ea95bbb64b7c490b0f5aa52996c11e92a20"},
{file = "pathspec-0.11.2.tar.gz", hash = "sha256:e0d8d0ac2f12da61956eb2306b69f9469b42f4deb0f3cb6ed47b9cce9996ced3"},
]
[[package]]
@ -2110,18 +2110,18 @@ tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "pa
[[package]]
name = "platformdirs"
version = "3.9.1"
version = "3.10.0"
description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"."
optional = false
python-versions = ">=3.7"
files = [
{file = "platformdirs-3.9.1-py3-none-any.whl", hash = "sha256:ad8291ae0ae5072f66c16945166cb11c63394c7a3ad1b1bc9828ca3162da8c2f"},
{file = "platformdirs-3.9.1.tar.gz", hash = "sha256:1b42b450ad933e981d56e59f1b97495428c9bd60698baab9f3eb3d00d5822421"},
{file = "platformdirs-3.10.0-py3-none-any.whl", hash = "sha256:d7c24979f292f916dc9cbf8648319032f551ea8c49a4c9bf2fb556a02070ec1d"},
{file = "platformdirs-3.10.0.tar.gz", hash = "sha256:b45696dab2d7cc691a3226759c0d3b00c47c8b6e293d96f6436f733303f77f6d"},
]
[package.extras]
docs = ["furo (>=2023.5.20)", "proselint (>=0.13)", "sphinx (>=7.0.1)", "sphinx-autodoc-typehints (>=1.23,!=1.23.4)"]
test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.3.1)", "pytest-cov (>=4.1)", "pytest-mock (>=3.10)"]
docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.1)", "sphinx-autodoc-typehints (>=1.24)"]
test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4)", "pytest-cov (>=4.1)", "pytest-mock (>=3.11.1)"]
[[package]]
name = "pluggy"
@ -2215,47 +2215,47 @@ files = [
[[package]]
name = "pydantic"
version = "1.10.11"
version = "1.10.12"
description = "Data validation and settings management using python type hints"
optional = false
python-versions = ">=3.7"
files = [
{file = "pydantic-1.10.11-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ff44c5e89315b15ff1f7fdaf9853770b810936d6b01a7bcecaa227d2f8fe444f"},
{file = "pydantic-1.10.11-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a6c098d4ab5e2d5b3984d3cb2527e2d6099d3de85630c8934efcfdc348a9760e"},
{file = "pydantic-1.10.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:16928fdc9cb273c6af00d9d5045434c39afba5f42325fb990add2c241402d151"},
{file = "pydantic-1.10.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0588788a9a85f3e5e9ebca14211a496409cb3deca5b6971ff37c556d581854e7"},
{file = "pydantic-1.10.11-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e9baf78b31da2dc3d3f346ef18e58ec5f12f5aaa17ac517e2ffd026a92a87588"},
{file = "pydantic-1.10.11-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:373c0840f5c2b5b1ccadd9286782852b901055998136287828731868027a724f"},
{file = "pydantic-1.10.11-cp310-cp310-win_amd64.whl", hash = "sha256:c3339a46bbe6013ef7bdd2844679bfe500347ac5742cd4019a88312aa58a9847"},
{file = "pydantic-1.10.11-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:08a6c32e1c3809fbc49debb96bf833164f3438b3696abf0fbeceb417d123e6eb"},
{file = "pydantic-1.10.11-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a451ccab49971af043ec4e0d207cbc8cbe53dbf148ef9f19599024076fe9c25b"},
{file = "pydantic-1.10.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b02d24f7b2b365fed586ed73582c20f353a4c50e4be9ba2c57ab96f8091ddae"},
{file = "pydantic-1.10.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3f34739a89260dfa420aa3cbd069fbcc794b25bbe5c0a214f8fb29e363484b66"},
{file = "pydantic-1.10.11-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:e297897eb4bebde985f72a46a7552a7556a3dd11e7f76acda0c1093e3dbcf216"},
{file = "pydantic-1.10.11-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d185819a7a059550ecb85d5134e7d40f2565f3dd94cfd870132c5f91a89cf58c"},
{file = "pydantic-1.10.11-cp311-cp311-win_amd64.whl", hash = "sha256:4400015f15c9b464c9db2d5d951b6a780102cfa5870f2c036d37c23b56f7fc1b"},
{file = "pydantic-1.10.11-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:2417de68290434461a266271fc57274a138510dca19982336639484c73a07af6"},
{file = "pydantic-1.10.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:331c031ba1554b974c98679bd0780d89670d6fd6f53f5d70b10bdc9addee1713"},
{file = "pydantic-1.10.11-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8268a735a14c308923e8958363e3a3404f6834bb98c11f5ab43251a4e410170c"},
{file = "pydantic-1.10.11-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:44e51ba599c3ef227e168424e220cd3e544288c57829520dc90ea9cb190c3248"},
{file = "pydantic-1.10.11-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d7781f1d13b19700b7949c5a639c764a077cbbdd4322ed505b449d3ca8edcb36"},
{file = "pydantic-1.10.11-cp37-cp37m-win_amd64.whl", hash = "sha256:7522a7666157aa22b812ce14c827574ddccc94f361237ca6ea8bb0d5c38f1629"},
{file = "pydantic-1.10.11-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:bc64eab9b19cd794a380179ac0e6752335e9555d214cfcb755820333c0784cb3"},
{file = "pydantic-1.10.11-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:8dc77064471780262b6a68fe67e013298d130414d5aaf9b562c33987dbd2cf4f"},
{file = "pydantic-1.10.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fe429898f2c9dd209bd0632a606bddc06f8bce081bbd03d1c775a45886e2c1cb"},
{file = "pydantic-1.10.11-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:192c608ad002a748e4a0bed2ddbcd98f9b56df50a7c24d9a931a8c5dd053bd3d"},
{file = "pydantic-1.10.11-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:ef55392ec4bb5721f4ded1096241e4b7151ba6d50a50a80a2526c854f42e6a2f"},
{file = "pydantic-1.10.11-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:41e0bb6efe86281623abbeeb0be64eab740c865388ee934cd3e6a358784aca6e"},
{file = "pydantic-1.10.11-cp38-cp38-win_amd64.whl", hash = "sha256:265a60da42f9f27e0b1014eab8acd3e53bd0bad5c5b4884e98a55f8f596b2c19"},
{file = "pydantic-1.10.11-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:469adf96c8e2c2bbfa655fc7735a2a82f4c543d9fee97bd113a7fb509bf5e622"},
{file = "pydantic-1.10.11-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e6cbfbd010b14c8a905a7b10f9fe090068d1744d46f9e0c021db28daeb8b6de1"},
{file = "pydantic-1.10.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abade85268cc92dff86d6effcd917893130f0ff516f3d637f50dadc22ae93999"},
{file = "pydantic-1.10.11-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e9738b0f2e6c70f44ee0de53f2089d6002b10c33264abee07bdb5c7f03038303"},
{file = "pydantic-1.10.11-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:787cf23e5a0cde753f2eabac1b2e73ae3844eb873fd1f5bdbff3048d8dbb7604"},
{file = "pydantic-1.10.11-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:174899023337b9fc685ac8adaa7b047050616136ccd30e9070627c1aaab53a13"},
{file = "pydantic-1.10.11-cp39-cp39-win_amd64.whl", hash = "sha256:1954f8778489a04b245a1e7b8b22a9d3ea8ef49337285693cf6959e4b757535e"},
{file = "pydantic-1.10.11-py3-none-any.whl", hash = "sha256:008c5e266c8aada206d0627a011504e14268a62091450210eda7c07fabe6963e"},
{file = "pydantic-1.10.11.tar.gz", hash = "sha256:f66d479cf7eb331372c470614be6511eae96f1f120344c25f3f9bb59fb1b5528"},
{file = "pydantic-1.10.12-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a1fcb59f2f355ec350073af41d927bf83a63b50e640f4dbaa01053a28b7a7718"},
{file = "pydantic-1.10.12-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b7ccf02d7eb340b216ec33e53a3a629856afe1c6e0ef91d84a4e6f2fb2ca70fe"},
{file = "pydantic-1.10.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8fb2aa3ab3728d950bcc885a2e9eff6c8fc40bc0b7bb434e555c215491bcf48b"},
{file = "pydantic-1.10.12-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:771735dc43cf8383959dc9b90aa281f0b6092321ca98677c5fb6125a6f56d58d"},
{file = "pydantic-1.10.12-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:ca48477862372ac3770969b9d75f1bf66131d386dba79506c46d75e6b48c1e09"},
{file = "pydantic-1.10.12-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a5e7add47a5b5a40c49b3036d464e3c7802f8ae0d1e66035ea16aa5b7a3923ed"},
{file = "pydantic-1.10.12-cp310-cp310-win_amd64.whl", hash = "sha256:e4129b528c6baa99a429f97ce733fff478ec955513630e61b49804b6cf9b224a"},
{file = "pydantic-1.10.12-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b0d191db0f92dfcb1dec210ca244fdae5cbe918c6050b342d619c09d31eea0cc"},
{file = "pydantic-1.10.12-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:795e34e6cc065f8f498c89b894a3c6da294a936ee71e644e4bd44de048af1405"},
{file = "pydantic-1.10.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:69328e15cfda2c392da4e713443c7dbffa1505bc9d566e71e55abe14c97ddc62"},
{file = "pydantic-1.10.12-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2031de0967c279df0d8a1c72b4ffc411ecd06bac607a212892757db7462fc494"},
{file = "pydantic-1.10.12-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:ba5b2e6fe6ca2b7e013398bc7d7b170e21cce322d266ffcd57cca313e54fb246"},
{file = "pydantic-1.10.12-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2a7bac939fa326db1ab741c9d7f44c565a1d1e80908b3797f7f81a4f86bc8d33"},
{file = "pydantic-1.10.12-cp311-cp311-win_amd64.whl", hash = "sha256:87afda5539d5140cb8ba9e8b8c8865cb5b1463924d38490d73d3ccfd80896b3f"},
{file = "pydantic-1.10.12-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:549a8e3d81df0a85226963611950b12d2d334f214436a19537b2efed61b7639a"},
{file = "pydantic-1.10.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:598da88dfa127b666852bef6d0d796573a8cf5009ffd62104094a4fe39599565"},
{file = "pydantic-1.10.12-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ba5c4a8552bff16c61882db58544116d021d0b31ee7c66958d14cf386a5b5350"},
{file = "pydantic-1.10.12-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c79e6a11a07da7374f46970410b41d5e266f7f38f6a17a9c4823db80dadf4303"},
{file = "pydantic-1.10.12-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ab26038b8375581dc832a63c948f261ae0aa21f1d34c1293469f135fa92972a5"},
{file = "pydantic-1.10.12-cp37-cp37m-win_amd64.whl", hash = "sha256:e0a16d274b588767602b7646fa05af2782576a6cf1022f4ba74cbb4db66f6ca8"},
{file = "pydantic-1.10.12-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6a9dfa722316f4acf4460afdf5d41d5246a80e249c7ff475c43a3a1e9d75cf62"},
{file = "pydantic-1.10.12-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a73f489aebd0c2121ed974054cb2759af8a9f747de120acd2c3394cf84176ccb"},
{file = "pydantic-1.10.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b30bcb8cbfccfcf02acb8f1a261143fab622831d9c0989707e0e659f77a18e0"},
{file = "pydantic-1.10.12-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2fcfb5296d7877af406ba1547dfde9943b1256d8928732267e2653c26938cd9c"},
{file = "pydantic-1.10.12-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:2f9a6fab5f82ada41d56b0602606a5506aab165ca54e52bc4545028382ef1c5d"},
{file = "pydantic-1.10.12-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:dea7adcc33d5d105896401a1f37d56b47d443a2b2605ff8a969a0ed5543f7e33"},
{file = "pydantic-1.10.12-cp38-cp38-win_amd64.whl", hash = "sha256:1eb2085c13bce1612da8537b2d90f549c8cbb05c67e8f22854e201bde5d98a47"},
{file = "pydantic-1.10.12-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ef6c96b2baa2100ec91a4b428f80d8f28a3c9e53568219b6c298c1125572ebc6"},
{file = "pydantic-1.10.12-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6c076be61cd0177a8433c0adcb03475baf4ee91edf5a4e550161ad57fc90f523"},
{file = "pydantic-1.10.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d5a58feb9a39f481eda4d5ca220aa8b9d4f21a41274760b9bc66bfd72595b86"},
{file = "pydantic-1.10.12-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5f805d2d5d0a41633651a73fa4ecdd0b3d7a49de4ec3fadf062fe16501ddbf1"},
{file = "pydantic-1.10.12-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1289c180abd4bd4555bb927c42ee42abc3aee02b0fb2d1223fb7c6e5bef87dbe"},
{file = "pydantic-1.10.12-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5d1197e462e0364906cbc19681605cb7c036f2475c899b6f296104ad42b9f5fb"},
{file = "pydantic-1.10.12-cp39-cp39-win_amd64.whl", hash = "sha256:fdbdd1d630195689f325c9ef1a12900524dceb503b00a987663ff4f58669b93d"},
{file = "pydantic-1.10.12-py3-none-any.whl", hash = "sha256:b749a43aa51e32839c9d71dc67eb1e4221bb04af1033a32e3923d46f9effa942"},
{file = "pydantic-1.10.12.tar.gz", hash = "sha256:0fe8a415cea8f340e7a9af9c54fc71a649b43e8ca3cc732986116b3cb135d303"},
]
[package.dependencies]
@ -2346,6 +2346,23 @@ pytest = ">=4.6"
[package.extras]
testing = ["fields", "hunter", "process-tests", "pytest-xdist", "six", "virtualenv"]
[[package]]
name = "pytest-mock"
version = "3.11.1"
description = "Thin-wrapper around the mock package for easier use with pytest"
optional = false
python-versions = ">=3.7"
files = [
{file = "pytest-mock-3.11.1.tar.gz", hash = "sha256:7f6b125602ac6d743e523ae0bfa71e1a697a2f5534064528c6ff84c2f7c2fc7f"},
{file = "pytest_mock-3.11.1-py3-none-any.whl", hash = "sha256:21c279fff83d70763b05f8874cc9cfb3fcacd6d354247a976f9529d19f9acf39"},
]
[package.dependencies]
pytest = ">=5.0"
[package.extras]
dev = ["pre-commit", "pytest-asyncio", "tox"]
[[package]]
name = "python-dateutil"
version = "2.8.2"
@ -3664,4 +3681,4 @@ testing = ["coverage (>=5.0.3)", "zope.event", "zope.testing"]
[metadata]
lock-version = "2.0"
python-versions = "^3.11"
content-hash = "4a06d26614d016bfdbb290ad93b3c71378ad03b249a8f06cb53c82465862977f"
content-hash = "0a4f26164e0dd32ce9d63da9322739c0812e56a5bdfb4148c973e22434344032"

View File

@ -33,6 +33,7 @@ httpx = "^0.24.1"
pytest-asyncio = "^0.21.0"
pytest-cov = "^4.1.0"
ruff = "^0.0.272"
pytest-mock = "^3.11.1"
[[tool.poetry.source]]
name = "pytorch-cpu"
@ -60,10 +61,14 @@ warn_untyped_fields = true
[[tool.mypy.overrides]]
module = [
"huggingface_hub",
"transformers.pipelines",
"cv2",
"insightface.app",
"insightface.model_zoo",
"insightface.utils.face_align",
"insightface.utils.storage",
"sentence_transformers",
"sentence_transformers.util",
"aiocache.backends.memory",
"aiocache.lock",
"aiocache.plugins"