1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-24 13:56:33 +02:00

avfilter/vf_v360: reduce unnecessary negations

This commit is contained in:
Paul B Mahol 2020-03-28 22:51:25 +01:00
parent 4cb0dda555
commit 460001981f

View File

@ -942,33 +942,33 @@ static void cube_to_xyz(const V360Context *s,
switch (direction) {
case RIGHT:
l_x = 1.f;
l_y = -vf;
l_z = uf;
l_y = vf;
l_z = -uf;
break;
case LEFT:
l_x = -1.f;
l_y = -vf;
l_z = -uf;
l_y = vf;
l_z = uf;
break;
case UP:
l_x = uf;
l_y = 1.f;
l_z = -vf;
break;
case DOWN:
l_x = uf;
l_y = -1.f;
l_z = vf;
break;
case DOWN:
l_x = uf;
l_y = 1.f;
l_z = -vf;
break;
case FRONT:
l_x = uf;
l_y = -vf;
l_z = -1.f;
l_y = vf;
l_z = 1.f;
break;
case BACK:
l_x = -uf;
l_y = -vf;
l_z = 1.f;
l_y = vf;
l_z = -1.f;
break;
default:
av_assert0(0);
@ -995,8 +995,8 @@ static void xyz_to_cube(const V360Context *s,
const float *vec,
float *uf, float *vf, int *direction)
{
const float phi = atan2f(vec[0], -vec[2]);
const float theta = asinf(-vec[1]);
const float phi = atan2f(vec[0], vec[2]);
const float theta = asinf(vec[1]);
float phi_norm, theta_threshold;
int face;
@ -1023,27 +1023,27 @@ static void xyz_to_cube(const V360Context *s,
switch (*direction) {
case RIGHT:
*uf = vec[2] / vec[0];
*vf = -vec[1] / vec[0];
break;
case LEFT:
*uf = vec[2] / vec[0];
*uf = -vec[2] / vec[0];
*vf = vec[1] / vec[0];
break;
case UP:
*uf = vec[0] / vec[1];
*vf = -vec[2] / vec[1];
case LEFT:
*uf = -vec[2] / vec[0];
*vf = -vec[1] / vec[0];
break;
case DOWN:
case UP:
*uf = -vec[0] / vec[1];
*vf = -vec[2] / vec[1];
break;
case DOWN:
*uf = vec[0] / vec[1];
*vf = -vec[2] / vec[1];
break;
case FRONT:
*uf = -vec[0] / vec[2];
*uf = vec[0] / vec[2];
*vf = vec[1] / vec[2];
break;
case BACK:
*uf = -vec[0] / vec[2];
*uf = vec[0] / vec[2];
*vf = -vec[1] / vec[2];
break;
default:
@ -1627,9 +1627,9 @@ static int equirect_to_xyz(const V360Context *s,
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
vec[0] = cos_theta * sin_phi;
vec[1] = -sin_theta;
vec[2] = -cos_theta * cos_phi;
vec[0] = cos_theta * sin_phi;
vec[1] = sin_theta;
vec[2] = cos_theta * cos_phi;
return 1;
}
@ -1656,9 +1656,9 @@ static int hequirect_to_xyz(const V360Context *s,
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
vec[0] = cos_theta * sin_phi;
vec[1] = -sin_theta;
vec[2] = -cos_theta * cos_phi;
vec[0] = cos_theta * sin_phi;
vec[1] = sin_theta;
vec[2] = cos_theta * cos_phi;
return 1;
}
@ -1700,9 +1700,9 @@ static int stereographic_to_xyz(const V360Context *s,
const float theta = atanf(r) * 2.f;
const float sin_theta = sinf(theta);
vec[0] = x / r * sin_theta;
vec[1] = -y / r * sin_theta;
vec[2] = -cosf(theta);
vec[0] = x / r * sin_theta;
vec[1] = y / r * sin_theta;
vec[2] = cosf(theta);
normalize_vector(vec);
@ -1742,11 +1742,11 @@ static int xyz_to_stereographic(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float theta = acosf(-vec[2]);
const float theta = acosf(vec[2]);
const float r = tanf(theta * 0.5f);
const float c = r / hypotf(vec[0], vec[1]);
const float x = vec[0] * c / s->iflat_range[0] * s->input_mirror_modifier[0];
const float y = -vec[1] * c / s->iflat_range[1] * s->input_mirror_modifier[1];
const float x = vec[0] * c / s->iflat_range[0] * s->input_mirror_modifier[0];
const float y = vec[1] * c / s->iflat_range[1] * s->input_mirror_modifier[1];
const float uf = (x + 1.f) * width / 2.f;
const float vf = (y + 1.f) * height / 2.f;
@ -1785,8 +1785,8 @@ static int xyz_to_equirect(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float phi = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0];
const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1];
const float phi = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0];
const float theta = asinf(vec[1]) * s->input_mirror_modifier[1];
const float uf = (phi / M_PI + 1.f) * width / 2.f;
const float vf = (theta / M_PI_2 + 1.f) * height / 2.f;
@ -1823,8 +1823,8 @@ static int xyz_to_hequirect(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float phi = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0];
const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1];
const float phi = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0];
const float theta = asinf(vec[1]) * s->input_mirror_modifier[1];
const float uf = (phi / M_PI_2 + 1.f) * width / 2.f;
const float vf = (theta / M_PI_2 + 1.f) * height / 2.f;
@ -1883,11 +1883,11 @@ static int xyz_to_flat(const V360Context *s,
const float theta = acosf(vec[2]);
const float r = tanf(theta);
const float rr = fabsf(r) < 1e+6f ? r : hypotf(width, height);
const float zf = -vec[2];
const float zf = vec[2];
const float h = hypotf(vec[0], vec[1]);
const float c = h <= 1e-6f ? 1.f : rr / h;
float uf = -vec[0] * c / s->iflat_range[0] * s->input_mirror_modifier[0];
float vf = vec[1] * c / s->iflat_range[1] * s->input_mirror_modifier[1];
float uf = vec[0] * c / s->iflat_range[0] * s->input_mirror_modifier[0];
float vf = vec[1] * c / s->iflat_range[1] * s->input_mirror_modifier[1];
int visible, ui, vi;
uf = zf >= 0.f ? (uf + 1.f) * width / 2.f : 0.f;
@ -1927,8 +1927,8 @@ static int xyz_to_mercator(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float phi = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0];
const float theta = -vec[1] * s->input_mirror_modifier[1];
const float phi = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0];
const float theta = vec[1] * s->input_mirror_modifier[1];
const float uf = (phi / M_PI + 1.f) * width / 2.f;
const float vf = (av_clipf(logf((1.f + theta) / (1.f - theta)) / (2.f * M_PI), -1.f, 1.f) + 1.f) * height / 2.f;
@ -1969,12 +1969,12 @@ static int mercator_to_xyz(const V360Context *s,
const float sin_phi = sinf(phi);
const float cos_phi = cosf(phi);
const float sin_theta = -2.f * expf(y) / div;
const float cos_theta = -(expf(2.f * y) - 1.f) / div;
const float sin_theta = 2.f * expf(y) / div;
const float cos_theta = (expf(2.f * y) - 1.f) / div;
vec[0] = sin_theta * cos_phi;
vec[1] = cos_theta;
vec[2] = sin_theta * sin_phi;
vec[0] = -sin_theta * cos_phi;
vec[1] = cos_theta;
vec[2] = sin_theta * sin_phi;
return 1;
}
@ -1996,10 +1996,10 @@ static int xyz_to_ball(const V360Context *s,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float l = hypotf(vec[0], vec[1]);
const float r = sqrtf(1.f + vec[2]) / M_SQRT2;
const float r = sqrtf(1.f - vec[2]) / M_SQRT2;
const float uf = (1.f + r * vec[0] * s->input_mirror_modifier[0] / (l > 0.f ? l : 1.f)) * width * 0.5f;
const float vf = (1.f - r * vec[1] * s->input_mirror_modifier[1] / (l > 0.f ? l : 1.f)) * height * 0.5f;
const float vf = (1.f + r * vec[1] * s->input_mirror_modifier[1] / (l > 0.f ? l : 1.f)) * height * 0.5f;
const int ui = floorf(uf);
const int vi = floorf(vf);
@ -2038,13 +2038,13 @@ static int ball_to_xyz(const V360Context *s,
if (l <= 1.f) {
const float z = 2.f * l * sqrtf(1.f - l * l);
vec[0] = z * x / (l > 0.f ? l : 1.f);
vec[1] = -z * y / (l > 0.f ? l : 1.f);
vec[2] = -1.f + 2.f * l * l;
vec[0] = z * x / (l > 0.f ? l : 1.f);
vec[1] = z * y / (l > 0.f ? l : 1.f);
vec[2] = 1.f - 2.f * l * l;
} else {
vec[0] = 0.f;
vec[1] = -1.f;
vec[2] = 0.f;
vec[0] = 0.f;
vec[1] = 1.f;
vec[2] = 0.f;
return 0;
}
@ -2081,9 +2081,9 @@ static int hammer_to_xyz(const V360Context *s,
const float w = sqrtf(1.f - 2.f * yy * z * z);
vec[0] = w * 2.f * a * b / (aa + bb);
vec[1] = -M_SQRT2 * y * z;
vec[2] = -w * (bb - aa) / (aa + bb);
vec[0] = w * 2.f * a * b / (aa + bb);
vec[1] = M_SQRT2 * y * z;
vec[2] = w * (bb - aa) / (aa + bb);
normalize_vector(vec);
@ -2106,11 +2106,11 @@ static int xyz_to_hammer(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float theta = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0];
const float theta = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0];
const float z = sqrtf(1.f + sqrtf(1.f - vec[1] * vec[1]) * cosf(theta * 0.5f));
const float x = sqrtf(1.f - vec[1] * vec[1]) * sinf(theta * 0.5f) / z;
const float y = -vec[1] / z * s->input_mirror_modifier[1];
const float y = vec[1] / z * s->input_mirror_modifier[1];
const float uf = (x + 1.f) * width / 2.f;
const float vf = (y + 1.f) * height / 2.f;
@ -2153,9 +2153,9 @@ static int sinusoidal_to_xyz(const V360Context *s,
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
vec[0] = cos_theta * sin_phi;
vec[1] = -sin_theta;
vec[2] = -cos_theta * cos_phi;
vec[0] = cos_theta * sin_phi;
vec[1] = sin_theta;
vec[2] = cos_theta * cos_phi;
normalize_vector(vec);
@ -2178,8 +2178,8 @@ static int xyz_to_sinusoidal(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1];
const float phi = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0] * cosf(theta);
const float theta = asinf(vec[1]) * s->input_mirror_modifier[1];
const float phi = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0] * cosf(theta);
const float uf = (phi / M_PI + 1.f) * width / 2.f;
const float vf = (theta / M_PI_2 + 1.f) * height / 2.f;
@ -2350,33 +2350,33 @@ static int eac_to_xyz(const V360Context *s,
switch (face) {
case TOP_LEFT:
l_x = -1.f;
l_y = -vf;
l_z = -uf;
l_y = vf;
l_z = uf;
break;
case TOP_MIDDLE:
l_x = uf;
l_y = -vf;
l_z = -1.f;
l_y = vf;
l_z = 1.f;
break;
case TOP_RIGHT:
l_x = 1.f;
l_y = -vf;
l_z = uf;
l_y = vf;
l_z = -uf;
break;
case BOTTOM_LEFT:
l_x = -vf;
l_y = -1.f;
l_z = uf;
l_y = 1.f;
l_z = -uf;
break;
case BOTTOM_MIDDLE:
l_x = -vf;
l_y = uf;
l_z = 1.f;
l_y = -uf;
l_z = -1.f;
break;
case BOTTOM_RIGHT:
l_x = -vf;
l_y = 1.f;
l_z = -uf;
l_y = -1.f;
l_z = uf;
break;
default:
av_assert0(0);
@ -2482,12 +2482,12 @@ static int flat_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float l_x = s->flat_range[0] * ((2.f * i + 0.5f) / width - 1.f);
const float l_y = -s->flat_range[1] * ((2.f * j + 0.5f) / height - 1.f);
const float l_x = s->flat_range[0] * ((2.f * i + 0.5f) / width - 1.f);
const float l_y = s->flat_range[1] * ((2.f * j + 0.5f) / height - 1.f);
vec[0] = l_x;
vec[1] = l_y;
vec[2] = -1.f;
vec[0] = l_x;
vec[1] = l_y;
vec[2] = 1.f;
normalize_vector(vec);
@ -2528,8 +2528,8 @@ static int fisheye_to_xyz(const V360Context *s,
const float uf = s->flat_range[0] * ((2.f * i) / width - 1.f);
const float vf = s->flat_range[1] * ((2.f * j + 1.f) / height - 1.f);
const float phi = -atan2f(vf, uf);
const float theta = -M_PI_2 * (1.f - hypotf(uf, vf));
const float phi = atan2f(vf, uf);
const float theta = M_PI_2 * (1.f - hypotf(uf, vf));
vec[0] = cosf(theta) * cosf(phi);
vec[1] = cosf(theta) * sinf(phi);
@ -2575,10 +2575,10 @@ static int xyz_to_fisheye(const V360Context *s,
{
const float h = hypotf(vec[0], vec[1]);
const float lh = h > 0.f ? h : 1.f;
const float phi = atan2f(h, -vec[2]) / M_PI;
const float phi = atan2f(h, vec[2]) / M_PI;
float uf = vec[0] / lh * phi * s->input_mirror_modifier[0] / s->iflat_range[0];
float vf = -vec[1] / lh * phi * s->input_mirror_modifier[1] / s->iflat_range[1];
float uf = vec[0] / lh * phi * s->input_mirror_modifier[0] / s->iflat_range[0];
float vf = vec[1] / lh * phi * s->input_mirror_modifier[1] / s->iflat_range[1];
const int visible = hypotf(uf, vf) <= 0.5f;
int ui, vi;
@ -2624,8 +2624,8 @@ static int pannini_to_xyz(const V360Context *s,
const float dscr = k * k * d * d - (k + 1.f) * (k * d * d - 1.f);
const float clon = (-k * d + sqrtf(dscr)) / (k + 1.f);
const float S = (d + 1.f) / (d + clon);
const float lon = -(M_PI + atan2f(uf, S * clon));
const float lat = -atan2f(vf, S);
const float lon = atan2f(uf, S * clon);
const float lat = atan2f(vf, S);
vec[0] = sinf(lon) * cosf(lat);
vec[1] = sinf(lat);
@ -2678,9 +2678,9 @@ static int cylindrical_to_xyz(const V360Context *s,
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
vec[0] = cos_theta * sin_phi;
vec[1] = -sin_theta;
vec[2] = -cos_theta * cos_phi;
vec[0] = cos_theta * sin_phi;
vec[1] = sin_theta;
vec[2] = cos_theta * cos_phi;
normalize_vector(vec);
@ -2720,8 +2720,8 @@ static int xyz_to_cylindrical(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float phi = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0] / s->iflat_range[0];
const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1];
const float phi = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0] / s->iflat_range[0];
const float theta = asinf(vec[1]) * s->input_mirror_modifier[1];
const float uf = (phi + 1.f) * (width - 1) / 2.f;
const float vf = (tanf(theta) / s->iflat_range[1] + 1.f) * height / 2.f;
@ -2779,13 +2779,13 @@ static int perspective_to_xyz(const V360Context *s,
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
vec[0] = cos_theta * sin_phi;
vec[1] = sin_theta;
vec[2] = -cos_theta * cos_phi;
vec[0] = cos_theta * sin_phi;
vec[1] = sin_theta;
vec[2] = cos_theta * cos_phi;
} else {
vec[0] = 0.f;
vec[1] = -1.f;
vec[2] = 0.f;
vec[0] = 0.f;
vec[1] = 1.f;
vec[2] = 0.f;
return 0;
}
@ -2896,7 +2896,7 @@ static int dfisheye_to_xyz(const V360Context *s,
const float eh = height;
const int ei = i >= ew ? i - ew : i;
const float m = i >= ew ? -1.f : 1.f;
const float m = i >= ew ? 1.f : -1.f;
const float uf = ((2.f * ei) / ew - 1.f) * scale;
const float vf = ((2.f * j + 1.f) / eh - 1.f) * scale;
@ -2908,8 +2908,8 @@ static int dfisheye_to_xyz(const V360Context *s,
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
vec[0] = cos_theta * m * -uf / lh;
vec[1] = cos_theta * -vf / lh;
vec[0] = cos_theta * m * uf / lh;
vec[1] = cos_theta * vf / lh;
vec[2] = sin_theta;
normalize_vector(vec);
@ -2942,16 +2942,16 @@ static int xyz_to_dfisheye(const V360Context *s,
const float lh = h > 0.f ? h : 1.f;
const float theta = acosf(fabsf(vec[2])) / M_PI;
float uf = (theta * (-vec[0] / lh) * s->input_mirror_modifier[0] * scale + 0.5f) * ew;
float vf = (theta * (-vec[1] / lh) * s->input_mirror_modifier[1] * scale + 0.5f) * eh;
float uf = (theta * (vec[0] / lh) * s->input_mirror_modifier[0] * scale + 0.5f) * ew;
float vf = (theta * (vec[1] / lh) * s->input_mirror_modifier[1] * scale + 0.5f) * eh;
int ui, vi;
int u_shift;
if (vec[2] >= 0.f) {
u_shift = 0;
} else {
u_shift = ceilf(ew);
} else {
u_shift = 0;
uf = ew - uf;
}
@ -3002,9 +3002,9 @@ static int barrel_to_xyz(const V360Context *s,
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
l_x = cos_theta * sin_phi;
l_y = -sin_theta;
l_z = -cos_theta * cos_phi;
l_x = cos_theta * sin_phi;
l_y = sin_theta;
l_z = cos_theta * cos_phi;
} else {
const int ew = width / 5;
const int eh = height / 2;
@ -3019,8 +3019,8 @@ static int barrel_to_xyz(const V360Context *s,
vf /= scale;
l_x = uf;
l_y = 1.f;
l_z = -vf;
l_y = -1.f;
l_z = vf;
} else { // DOWN
uf = 2.f * (i - 4 * ew) / ew - 1.f;
vf = 2.f * (j - eh) / eh - 1.f;
@ -3029,8 +3029,8 @@ static int barrel_to_xyz(const V360Context *s,
vf /= scale;
l_x = uf;
l_y = -1.f;
l_z = vf;
l_y = 1.f;
l_z = -vf;
}
}
@ -3061,8 +3061,8 @@ static int xyz_to_barrel(const V360Context *s,
{
const float scale = 0.99f;
const float phi = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0];
const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1];
const float phi = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0];
const float theta = asinf(vec[1]) * s->input_mirror_modifier[1];
const float theta_range = M_PI_4;
int ew, eh;
@ -3086,11 +3086,11 @@ static int xyz_to_barrel(const V360Context *s,
u_shift = s->ih_flip ? 0 : 4 * ew;
if (theta < 0.f) { // UP
uf = vec[0] / vec[1];
uf = -vec[0] / vec[1];
vf = -vec[2] / vec[1];
v_shift = 0;
} else { // DOWN
uf = -vec[0] / vec[1];
uf = vec[0] / vec[1];
vf = -vec[2] / vec[1];
v_shift = eh;
}
@ -3134,8 +3134,8 @@ static int xyz_to_barrelsplit(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float phi = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0];
const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1];
const float phi = atan2f(vec[0], vec[2]) * s->input_mirror_modifier[0];
const float theta = asinf(vec[1]) * s->input_mirror_modifier[1];
const float theta_range = M_PI_4;
@ -3174,23 +3174,23 @@ static int xyz_to_barrelsplit(const V360Context *s,
if (theta <= 0.f && theta >= -M_PI_2 &&
phi <= M_PI_2 && phi >= -M_PI_2) {
uf = vec[0] / vec[1];
uf = -vec[0] / vec[1];
vf = -vec[2] / vec[1];
v_shift = 0;
v_offset = -eh;
} else if (theta >= 0.f && theta <= M_PI_2 &&
phi <= M_PI_2 && phi >= -M_PI_2) {
uf = -vec[0] / vec[1];
uf = vec[0] / vec[1];
vf = -vec[2] / vec[1];
v_shift = height * 0.25f;
} else if (theta <= 0.f && theta >= -M_PI_2) {
uf = -vec[0] / vec[1];
uf = vec[0] / vec[1];
vf = vec[2] / vec[1];
v_shift = height * 0.5f;
v_offset = -eh;
} else {
uf = vec[0] / vec[1];
vf = vec[2] / vec[1];
uf = -vec[0] / vec[1];
vf = vec[2] / vec[1];
v_shift = height * 0.75f;
}
@ -3241,7 +3241,7 @@ static int barrelsplit_to_xyz(const V360Context *s,
const float back = floorf(y * 2.f);
const float phi = ((3.f / 2.f * x - 0.5f) / scalew - back + 1.f) * M_PI;
const float phi = ((3.f / 2.f * x - 0.5f) / scalew - back) * M_PI;
const float theta = (y - 0.25f - 0.5f * back) / scaleh * M_PI;
const float sin_phi = sinf(phi);
@ -3249,9 +3249,9 @@ static int barrelsplit_to_xyz(const V360Context *s,
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
l_x = -cos_theta * sin_phi;
l_y = -sin_theta;
l_z = cos_theta * cos_phi;
l_x = cos_theta * sin_phi;
l_y = sin_theta;
l_z = cos_theta * cos_phi;
} else {
const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width / 3.f) : 1.f - s->out_pad;
const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 4.f) : 1.f - s->out_pad;
@ -3268,8 +3268,8 @@ static int barrelsplit_to_xyz(const V360Context *s,
vf = 0.5f - vf;
l_x = (0.5f - uf) / scalew;
l_y = 0.5f;
l_z = (-0.5f + vf) / scaleh;
l_y = -0.5f;
l_z = (0.5f - vf) / scaleh;
break;
case 1:
vf = y * 2.f;
@ -3277,23 +3277,23 @@ static int barrelsplit_to_xyz(const V360Context *s,
vf = 1.f - (vf - 0.5f);
l_x = (0.5f - uf) / scalew;
l_y = -0.5f;
l_z = (0.5f - vf) / scaleh;
l_y = 0.5f;
l_z = (-0.5f + vf) / scaleh;
break;
case 2:
vf = y * 2.f - 0.5f;
vf = 1.f - (1.f - vf);
l_x = (0.5f - uf) / scalew;
l_y = 0.5f;
l_z = (-0.5f + vf) / scaleh;
l_y = -0.5f;
l_z = (0.5f - vf) / scaleh;
break;
case 3:
vf = y * 2.f - 1.5f;
l_x = (0.5f - uf) / scalew;
l_y = -0.5f;
l_z = (0.5f - vf) / scaleh;
l_y = 0.5f;
l_z = (-0.5f + vf) / scaleh;
break;
}
}
@ -3325,39 +3325,39 @@ static int tspyramid_to_xyz(const V360Context *s,
const float y = (j + 0.5f) / height;
if (x < 0.5f) {
vec[0] = x * 4.f - 1.f;
vec[1] = -(y * 2.f - 1.f);
vec[2] = -1.f;
vec[0] = x * 4.f - 1.f;
vec[1] = (y * 2.f - 1.f);
vec[2] = 1.f;
} else if (x >= 0.6875f && x < 0.8125f &&
y >= 0.375f && y < 0.625f) {
vec[0] = -(x - 0.6875f) * 16.f + 1.f;
vec[1] = -(y - 0.375f) * 8.f + 1.f;
vec[2] = 1.f;
vec[1] = (y - 0.375f) * 8.f - 1.f;
vec[2] = -1.f;
} else if (0.5f <= x && x < 0.6875f &&
((0.f <= y && y < 0.375f && y >= 2.f * (x - 0.5f)) ||
(0.375f <= y && y < 0.625f) ||
(0.625f <= y && y < 1.f && y <= 2.f * (1.f - x)))) {
vec[0] = 1.f;
vec[1] = -2.f * (y - 2.f * x + 1.f) / (3.f - 4.f * x) + 1.f;
vec[2] = 2.f * (x - 0.5f) / 0.1875f - 1.f;
vec[1] = 2.f * (y - 2.f * x + 1.f) / (3.f - 4.f * x) - 1.f;
vec[2] = -2.f * (x - 0.5f) / 0.1875f + 1.f;
} else if (0.8125f <= x && x < 1.f &&
((0.f <= y && y < 0.375f && x >= (1.f - y / 2.f)) ||
(0.375f <= y && y < 0.625f) ||
(0.625f <= y && y < 1.f && y <= (2.f * x - 1.f)))) {
vec[0] = -1.f;
vec[1] = -2.f * (y + 2.f * x - 2.f) / (4.f * x - 3.f) + 1.f;
vec[2] = -2.f * (x - 0.8125f) / 0.1875f + 1.f;
vec[1] = 2.f * (y + 2.f * x - 2.f) / (4.f * x - 3.f) - 1.f;
vec[2] = 2.f * (x - 0.8125f) / 0.1875f - 1.f;
} else if (0.f <= y && y < 0.375f &&
((0.5f <= x && x < 0.8125f && y < 2.f * (x - 0.5f)) ||
(0.6875f <= x && x < 0.8125f) ||
(0.8125f <= x && x < 1.f && x < (1.f - y / 2.f)))) {
vec[0] = 2.f * (1.f - x - 0.5f * y) / (0.5f - y) - 1.f;
vec[1] = 1.f;
vec[2] = -2.f * (0.375f - y) / 0.375f + 1.f;
vec[1] = -1.f;
vec[2] = 2.f * (0.375f - y) / 0.375f - 1.f;
} else {
vec[0] = 2.f * (0.5f - x + 0.5f * y) / (y - 0.5f) - 1.f;
vec[1] = -1.f;
vec[2] = 2.f * (1.f - y) / 0.375f - 1.f;
vec[1] = 1.f;
vec[2] = -2.f * (1.f - y) / 0.375f + 1.f;
}
normalize_vector(vec);
@ -3460,8 +3460,8 @@ static inline void calculate_rotation_matrix(float yaw, float pitch, float roll,
const float pitch_rad = pitch * M_PI / 180.f;
const float roll_rad = roll * M_PI / 180.f;
const float sin_yaw = sinf(-yaw_rad);
const float cos_yaw = cosf(-yaw_rad);
const float sin_yaw = sinf(yaw_rad);
const float cos_yaw = cosf(yaw_rad);
const float sin_pitch = sinf(pitch_rad);
const float cos_pitch = cosf(pitch_rad);
const float sin_roll = sinf(roll_rad);