RVV defines a total of 12 different extensions, including:
- 5 different instruction subsets:
- Zve32x: 8-, 16- and 32-bit integers,
- Zve32f: Zve32x plus single precision floats,
- Zve64x: Zve32x plus 64-bit integers,
- Zve64f: Zve32f plus Zve64x,
- Zve64d: Zve64f plus double precision floats.
- 6 different vector lengths:
- Zvl32b (embedded only),
- Zvl64b (embedded only),
- Zvl128b,
- Zvl256b,
- Zvl512b,
- Zvl1024b,
- and the V extension proper: equivalent to Zve64f and Zvl128b.
In total, there are 6 different possible sets of supported instructions
(including the empty set), but for convenience we allocate one bit for
each type sets: up-to-32-bit ints (RVV_I32), floats (RVV_F32),
64-bit ints (RVV_I64) and doubles (RVV_F64).
Whence the vector size is needed, it can be retrieved by reading the
unprivileged read-only vlenb CSR. This should probably be a separate
helper macro if needed at a later point.
This introduces compile-time and run-time CPU detection on RISC-V. In
practice, I doubt that FFmpeg will ever see a RISC-V CPU without all of
I, F and D extensions, and if it does, it probably won't have run-time
detection. So the flags are essentially always set.
But as things stand, checkasm wants them that way. Compare the ARMV8
flag on AArch64. We are nowhere near running short on CPU flag bits.
They are intended as replacements for avcodec_enum_to_chroma_pos()
and avcodec_chroma_pos_to_enum().
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
To support non-aligned buffers during the post-transform step, just iterate
backwards over the array.
This allows using the 15xN-point FFT, with which the speed is 2.1 times
faster than our old libavcodec implementation.
~4x faster than the C version.
The shuffles in the 15pt dim1 are seriously expensive. Not happy with it,
but I'm contempt.
Can be easily converted to pure AVX by removing all vpermpd/vpermps
instructions.
In case new orders are added in the future, existing library users can still
use the layout simply by ignoring everything but the channel count in it, so
make this explicit.
Reviewed-by: Anton Khirnov <anton@khirnov.net>
Signed-off-by: James Almer <jamrial@gmail.com>
Up until now, using NULL as key in av_dict_get() on a non-empty
AVDictionary would crash; using NULL as key in av_dict_set()
would also crash for a non-empty AVDictionary unless AV_DICT_MULTIKEY
was set; in case the dictionary was initially empty or AV_DICT_MULTIKEY
was set, it was even possible for av_dict_set() to succeed when
adding a NULL key, namely when one uses a value != NULL and
the AV_DICT_DONT_STRDUP_VAL flag. Using av_dict_get() on such
an AVDictionary will usually lead to crashes, though.
Fix this by actually checking for key in both functions; error out
if they are NULL.
While just at it, also stop relying on av_strdup(NULL) to return NULL
in av_dict_set().
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
Since introducing the various packed formats used by VAAPI (and p012),
we've noticed that there's actually a gap in how
av_find_best_pix_fmt_of_2 works. It doesn't actually assign any value
to having the same bit depth as the source format, when comparing
against formats with a higher bit depth. This usually doesn't matter,
because av_get_padded_bits_per_pixel() will account for it.
However, as many of these formats use padding internally, we find that
av_get_padded_bits_per_pixel() actually returns the same value for the
10 bit, 12 bit, 16 bit flavours, etc. In these tied situations, we end
up just picking the first of the two provided formats, even if the
second one should be preferred because it matches the actual bit depth.
This bug already existed if you tried to compare yuv420p10 against p016
and p010, for example, but it simply hadn't come up before so we never
noticed.
But now, we actually got a situation in the VAAPI VP9 decoder where it
offers both p010 and p012 because Profile 3 could be either depth and
ends up picking p012 for 10 bit content due to the ordering of the
testing.
In addition, in the process of testing the fix, I realised we have the
same gap when it comes to chroma subsampling - we do not favour a
format that has exactly the same subsampling vs one with less
subsampling when all else is equal.
To fix this, I'm introducing a small score penalty if the bit depth or
subsampling doesn't exactly match the source format. This will break
the tie in favour of the format with the exact match, but not offset
any of the other scoring penalties we already have.
I have added a set of tests around these formats which will fail
without this fix.
When appending two values (due to AV_DICT_APPEND), the earlier code
would first zero-allocate a buffer of the required size and then
copy both parts into it via av_strlcat(). This is problematic,
as it leads to quadratic performance in case of frequent enlargements.
Fix this by using av_realloc() (which is hopefully designed to handle
such cases in a better way than simply throwing the buffer we already
have away) and by copying the string via memcpy() (after all, we already
calculated the strlen of both strings).
Reviewed-by: Paul B Mahol <onemda@gmail.com>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
If a key already exists in an AVDictionary and the AV_DICT_APPEND flag
is set, the old entry is at first discarded from the dictionary, but
a pointer to the value is kept. Lateron enough memory to store the
appended string is allocated; should this allocation fail, the old string
is not freed and hence leaks. This commit changes this by moving
creating the combined value to an earlier point in the function,
which also ensures that the AVDictionary is unchanged in case of errors.
Reviewed-by: Paul B Mahol <onemda@gmail.com>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
We know that an AVDictionary is not empty if we have just added
an entry to it, so only check for it being empty on the branch
that does not do so.
Reviewed-by: Paul B Mahol <onemda@gmail.com>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
This reverts commit 2c8dc7e953.
The loongarch headers have been fixed, so that this wrapper
is no longer necessary.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
This reverts commit 6c9a60ada4.
The loongarch headers have been fixed, so that this workaround
is no longer necessary.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
If the target supports the Basic bit-manipulation (Zbb) extension, then
the REV8 instruction is available to reverse byte order.
Note that this instruction only exists at the "XLEN" register size,
so we need to right shift the result down to the data width.
If Zbb is not supported, then this patchset does nothing. Support for
run-time detection is left for the future. Currently, there are no
bits in auxv/ELF HWCAP for Z-extensions, so there are no clean ways to
do this.
This uses the architected RISC-V 64-bit cycle counter from the
RISC-V unprivileged instruction set.
In 64-bit and 128-bit, this is a straightforward CSR read.
In 32-bit mode, the 64-bit value is exposed as two CSRs, which
cannot be read atomically, so a loop is necessary to detect and fix up
the race condition where the bottom half wraps exactly between the two
reads.
AV_PIX_FMT_VUYX is used for 8bit 4:4:4 content in FFmpeg VAAPI, so
AV_PIX_FMT_VUYX should be used for 8bit 4:4:4 content in FFmpeg QSV too
because QSV is based on VAAPI on Linux. However the SDK only declares
support for AYUV and does nothing with the alpha, so this commit fudged
a mapping between AV_PIX_FMT_VUYX and MFX_FOURCC_AYUV.
Reviewed-by: Philip Langdale <philipl@overt.org>
Signed-off-by: Haihao Xiang <haihao.xiang@intel.com>