This patch removes all occurences of DNNReturnType from the DNN module.
This commit replaces DNN_SUCCESS by 0 (essentially the same), so the
functions with DNNReturnType now return 0 in case of success, the negative
values otherwise.
Signed-off-by: Shubhanshu Saxena <shubhanshu.e01@gmail.com>
Signed-off-by: Shubhanshu Saxena <shubhanshu.e01@gmail.com>
Switch to returning specific error codes or DNN_GENERIC_ERROR
when an error is encountered. For OpenVINO API errors, currently
DNN_GENERIC_ERROR is returned.
Signed-off-by: Shubhanshu Saxena <shubhanshu.e01@gmail.com>
This commit returns specific error codes from the execution
functions in the Native Backend layers instead of DNN_ERROR.
Signed-off-by: Shubhanshu Saxena <shubhanshu.e01@gmail.com>
This commit unifies the async and sync mode from the DNN filters'
perspective. As of this commit, the Native backend only supports
synchronous execution mode.
Now the user can switch between async and sync mode by using the
'async' option in the backend_configs. The values can be 1 for
async and 0 for sync mode of execution.
This commit affects the following filters:
1. vf_dnn_classify
2. vf_dnn_detect
3. vf_dnn_processing
4. vf_sr
5. vf_derain
This commit also updates the filters vf_dnn_detect and vf_dnn_classify
to send only the input frame and send NULL as output frame instead of
input frame to the DNN backends.
Signed-off-by: Shubhanshu Saxena <shubhanshu.e01@gmail.com>
Different function type of model requires different parameters, for
example, object detection detects lots of objects (cat/dog/...) in
the frame, and classifcation needs to know which object (cat or dog)
it is going to classify.
The current interface needs to add a new function with more parameters
to support new requirement, with this change, we can just add a new
struct (for example DNNExecClassifyParams) based on DNNExecBaseParams,
and so we can continue to use the current interface execute_model just
with params changed.
the data type and order together decide the color format, we could
not use AVPixelFormat directly because not all the possible formats
are covered by it.
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
So the backend knows the usage of model is for frame processing,
detect, classify, etc. Each function type has different behavior
in backend when handling the input/output data of the model.
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
the default number of batch_size is 1
Signed-off-by: Xie, Lin <lin.xie@intel.com>
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
'void *' is too flexible, since we can derive info from
AVFilterContext*, so we just unify the interface with this data
structure.
Signed-off-by: Xie, Lin <lin.xie@intel.com>
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
for some cases (for example, super resolution), the DNN model changes
the frame size which impacts the filter behavior, so the filter needs
to know the out frame size at very beginning.
Currently, the filter reuses DNNModule.execute_model to query the
out frame size, it is not clear from interface perspective, so add
a new explict interface DNNModel.get_output for such query.
suppose we have a detect and classify filter in the future, the
detect filter generates some bounding boxes (BBox) as AVFrame sidedata,
and the classify filter executes DNN model for each BBox. For each
BBox, we need to crop the AVFrame, copy data to DNN model input and do
the model execution. So we have to save the in_frame at DNNModel.set_input
and use it at DNNModule.execute_model, such saving is not feasible
when we support async execute_model.
This patch sets the in_frame as execution_model parameter, and so
all the information are put together within the same function for
each inference. It also makes easy to support BBox async inference.
Currently, every filter needs to provide code to transfer data from
AVFrame* to model input (DNNData*), and also from model output
(DNNData*) to AVFrame*. Actually, such transfer can be implemented
within DNN module, and so filter can focus on its own business logic.
DNN module also exports the function pointer pre_proc and post_proc
in struct DNNModel, just in case that a filter has its special logic
to transfer data between AVFrame* and DNNData*. The default implementation
within DNN module is used if the filter does not set pre/post_proc.
currently, output is set both at DNNModel.set_input_output and
DNNModule.execute_model, it makes sense that the output name is
provided at model inference time so all the output info is set
at a single place.
and so DNNModel.set_input_output is renamed to DNNModel.set_input
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
different backend might need different options for a better performance,
so, add the parameter into dnn interface, as a preparation.
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
OpenVINO is a Deep Learning Deployment Toolkit at
https://github.com/openvinotoolkit/openvino, it supports CPU, GPU
and heterogeneous plugins to accelerate deep learning inferencing.
Please refer to https://github.com/openvinotoolkit/openvino/blob/master/build-instruction.md
to build openvino (c library is built at the same time). Please add
option -DENABLE_MKL_DNN=ON for cmake to enable CPU path. The header
files and libraries are installed to /usr/local/deployment_tools/inference_engine/
with default options on my system.
To build FFmpeg with openvion, take my system as an example, run with:
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/deployment_tools/inference_engine/lib/intel64/:/usr/local/deployment_tools/inference_engine/external/tbb/lib/
$ ../ffmpeg/configure --enable-libopenvino --extra-cflags=-I/usr/local/deployment_tools/inference_engine/include/ --extra-ldflags=-L/usr/local/deployment_tools/inference_engine/lib/intel64
$ make
Here are the features provided by OpenVINO inference engine:
- support more DNN model formats
It supports TensorFlow, Caffe, ONNX, MXNet and Kaldi by converting them
into OpenVINO format with a python script. And torth model
can be first converted into ONNX and then to OpenVINO format.
see the script at https://github.com/openvinotoolkit/openvino/tree/master/model-optimizer/mo.py
which also does some optimization at model level.
- optimize at inference stage
It optimizes for X86 CPUs with SSE, AVX etc.
It also optimizes based on OpenCL for Intel GPUs.
(only Intel GPU supported becuase Intel OpenCL extension is used for optimization)
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
to support dnn networks more general, we need to know the input info
of the dnn model.
background:
The data type of dnn model's input could be float32, uint8 or fp16, etc.
And the w/h of input image could be fixed or variable.
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
so, we can make a filter more general to accept different network
models, by adding a data type convertion after getting data from network.
After we add dt field into struct DNNData, it becomes the same as
DNNInputData, so merge them with one struct: DNNData.
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
currently, only float is supported as model input, actually, there
are other data types, this patch adds uint8.
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
some models such as ssd, yolo have more than one output.
the clean up code in this patch is a little complex, it is because
that set_input_output_tf could be called for many times together
with ff_dnn_execute_model_tf, we have to clean resources for the
case that the two interfaces are called interleaved.
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
Currently, within interface set_input_output, the dims/memory of the tensorflow
dnn model output is determined by executing the model with zero input,
actually, the output dims might vary with different input data for networks
such as object detection models faster-rcnn, ssd and yolo.
This patch moves the logic from set_input_output to execute_model which
is suitable for all the cases. Since interface changed, and so dnn_backend_native
also changes.
In vf_sr.c, it knows it's srcnn or espcn by executing the model with zero input,
so execute_model has to be called in function config_props
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
remove the requirment that the name of DNN model input/output
should be "x"/"y",
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>