1
0
mirror of https://github.com/vcmi/vcmi.git synced 2024-12-22 22:13:35 +02:00
vcmi/lib/serializer/BinarySerializer.h

450 lines
10 KiB
C++
Raw Normal View History

/*
* BinarySerializer.h, part of VCMI engine
*
* Authors: listed in file AUTHORS in main folder
*
* License: GNU General Public License v2.0 or later
* Full text of license available in license.txt file, in main folder
*
*/
#pragma once
2023-11-08 22:05:36 +02:00
#include "CSerializer.h"
#include "CTypeList.h"
#include "SerializerReflection.h"
2024-01-20 23:26:04 +02:00
#include "ESerializationVersion.h"
#include "Serializeable.h"
#include "../mapObjects/CArmedInstance.h"
VCMI_LIB_NAMESPACE_BEGIN
class DLL_LINKAGE CSaverBase
{
protected:
IBinaryWriter * writer;
public:
CSaverBase(IBinaryWriter * w): writer(w){};
2024-05-17 18:36:07 +02:00
void write(const void * data, unsigned size)
{
2024-02-02 02:36:57 +02:00
writer->write(reinterpret_cast<const std::byte*>(data), size);
};
};
/// Main class for serialization of classes into binary form
/// Behaviour for various classes is following:
/// Primitives: copy memory into underlying stream (defined in CSaverBase)
/// Containers: custom overloaded method that decouples class into primitives
/// VCMI Classes: recursively serialize them via ClassName::serialize( BinarySerializer &, int version) call
2024-05-17 15:09:45 +02:00
class BinarySerializer : public CSaverBase
{
2023-04-16 23:24:11 +02:00
template<typename Handler>
struct VariantVisitorSaver
{
Handler &h;
VariantVisitorSaver(Handler &H):h(H)
{
}
template <typename T>
void operator()(const T &t)
{
h & t;
}
};
template<typename Fake, typename T>
bool saveIfStackInstance(const T &data)
{
return false;
}
template<typename Fake>
bool saveIfStackInstance(const CStackInstance* const &data)
{
assert(data->armyObj);
SlotID slot;
if(data->getNodeType() == CBonusSystemNode::COMMANDER)
slot = SlotID::COMMANDER_SLOT_PLACEHOLDER;
else
slot = data->armyObj->findStack(data);
assert(slot != SlotID());
save(data->armyObj->id);
save(slot);
if (data->armyObj->id != ObjectInstanceID::NONE)
return true;
else
return false;
}
public:
using Version = ESerializationVersion;
std::map<std::string, uint32_t> savedStrings;
2024-05-17 18:36:07 +02:00
std::map<const Serializeable*, uint32_t> savedPointers;
Version version = Version::CURRENT;
static constexpr bool trackSerializedPointers = true;
static constexpr bool saving = true;
bool loadingGamestate = false;
2024-05-17 18:36:07 +02:00
bool hasFeature(Version what) const
{
return version >= what;
};
2024-05-17 15:09:45 +02:00
DLL_LINKAGE BinarySerializer(IBinaryWriter * w);
template<class T>
BinarySerializer & operator&(const T & t)
{
this->save(t);
return * this;
}
2024-05-16 20:53:49 +02:00
void saveEncodedInteger(int64_t value)
{
2024-05-16 20:53:49 +02:00
uint64_t valueUnsigned = std::abs(value);
while (valueUnsigned > 0x3f)
{
uint8_t byteValue = (valueUnsigned & 0x7f) | 0x80;
valueUnsigned = valueUnsigned >> 7;
save(byteValue);
}
uint8_t lastByteValue = valueUnsigned & 0x3f;
2024-05-16 20:53:49 +02:00
if (value < 0)
lastByteValue |= 0x40;
save(lastByteValue);
}
template < typename T, typename std::enable_if_t < std::is_same_v<T, bool>, int > = 0 >
void save(const T &data)
{
2024-05-17 18:36:07 +02:00
uint8_t writ = static_cast<uint8_t>(data);
save(writ);
}
template < class T, typename std::enable_if_t < std::is_floating_point_v<T>, int > = 0 >
void save(const T &data)
{
// save primitive - simply dump binary data to output
2024-02-02 02:36:57 +02:00
this->write(static_cast<const void *>(&data), sizeof(data));
}
template < class T, typename std::enable_if_t < std::is_integral_v<T> && !std::is_same_v<T, bool>, int > = 0 >
void save(const T &data)
{
if constexpr (sizeof(T) == 1)
{
// save primitive - simply dump binary data to output
this->write(static_cast<const void *>(&data), sizeof(data));
}
else
{
if (hasFeature(Version::COMPACT_INTEGER_SERIALIZATION))
saveEncodedInteger(data);
else
this->write(static_cast<const void *>(&data), sizeof(data));
}
}
void save(const Version &data)
{
this->write(static_cast<const void *>(&data), sizeof(data));
}
template < typename T, typename std::enable_if_t < std::is_enum_v<T>, int > = 0 >
void save(const T &data)
{
2024-05-17 18:36:07 +02:00
int32_t writ = static_cast<int32_t>(data);
*this & writ;
}
template < typename T, typename std::enable_if_t < std::is_array_v<T>, int > = 0 >
void save(const T &data)
{
2024-05-17 18:36:07 +02:00
uint32_t size = std::size(data);
for(uint32_t i=0; i < size; i++)
*this & data[i];
}
template < typename T, typename std::enable_if_t < std::is_pointer_v<T>, int > = 0 >
void save(const T &data)
{
//write if pointer is not nullptr
2023-11-07 17:29:57 +02:00
bool isNull = (data == nullptr);
save(isNull);
//if pointer is nullptr then we don't need anything more...
2023-11-07 17:29:57 +02:00
if(data == nullptr)
return;
typedef typename std::remove_const_t<typename std::remove_pointer_t<T>> TObjectType;
2023-11-08 22:05:36 +02:00
if(writer->smartVectorMembersSerialization)
{
typedef typename VectorizedTypeFor<TObjectType>::type VType;
typedef typename VectorizedIDType<TObjectType>::type IDType;
if(const auto *info = writer->getVectorizedTypeInfo<VType, IDType>())
{
IDType id = writer->getIdFromVectorItem<VType>(*info, data);
save(id);
if(id != IDType(-1)) //vector id is enough
return;
}
}
if(writer->sendStackInstanceByIds)
{
const bool gotSaved = saveIfStackInstance<void>(data);
if(gotSaved)
return;
}
if(trackSerializedPointers)
{
// We might have an object that has multiple inheritance and store it via the non-first base pointer.
// Therefore, all pointers need to be normalized to the actual object address.
2024-05-17 18:36:07 +02:00
const auto * actualPointer = static_cast<const Serializeable*>(data);
2023-04-17 23:11:16 +02:00
auto i = savedPointers.find(actualPointer);
if(i != savedPointers.end())
{
//this pointer has been already serialized - write only it's id
save(i->second);
return;
}
//give id to this pointer
2024-05-17 18:36:07 +02:00
uint32_t pid = savedPointers.size();
savedPointers[actualPointer] = pid;
save(pid);
}
//write type identifier
2023-11-08 22:05:36 +02:00
uint16_t tid = CTypeList::getInstance().getTypeID(data);
save(tid);
if(!tid)
save(*data); //if type is unregistered simply write all data in a standard way
else
CSerializationApplier::getInstance().getApplier(tid)->savePtr(*this, static_cast<const Serializeable*>(data)); //call serializer specific for our real type
}
template < typename T, typename std::enable_if_t < is_serializeable<BinarySerializer, T>::value, int > = 0 >
void save(const T &data)
{
const_cast<T&>(data).serialize(*this);
}
void save(const std::monostate & data)
{
// no-op
}
template <typename T>
void save(const std::shared_ptr<T> &data)
{
T *internalPtr = data.get();
save(internalPtr);
}
template <typename T>
void save(const std::shared_ptr<const T> &data)
{
const T *internalPtr = data.get();
save(internalPtr);
}
template <typename T>
void save(const std::unique_ptr<T> &data)
{
T *internalPtr = data.get();
save(internalPtr);
}
template <typename T, typename std::enable_if_t < !std::is_same_v<T, bool >, int > = 0>
void save(const std::vector<T> &data)
{
2024-05-17 18:36:07 +02:00
uint32_t length = data.size();
*this & length;
2024-05-17 18:36:07 +02:00
for(uint32_t i=0;i<length;i++)
save(data[i]);
}
template <typename T, typename std::enable_if_t < !std::is_same_v<T, bool >, int > = 0>
void save(const std::deque<T> & data)
{
2024-05-17 18:36:07 +02:00
uint32_t length = data.size();
*this & length;
2024-05-17 18:36:07 +02:00
for(uint32_t i = 0; i < length; i++)
save(data[i]);
}
template <typename T, size_t N>
void save(const std::array<T, N> &data)
{
2024-05-17 18:36:07 +02:00
for(uint32_t i=0; i < N; i++)
save(data[i]);
}
template <typename T>
void save(const std::set<T> &data)
{
2023-04-17 23:11:16 +02:00
auto & d = const_cast<std::set<T> &>(data);
2024-05-17 18:36:07 +02:00
uint32_t length = d.size();
save(length);
2023-04-17 23:11:16 +02:00
for(auto i = d.begin(); i != d.end(); i++)
save(*i);
}
template <typename T, typename U>
void save(const std::unordered_set<T, U> &data)
{
2023-04-17 23:11:16 +02:00
auto & d = const_cast<std::unordered_set<T, U> &>(data);
2024-05-17 18:36:07 +02:00
uint32_t length = d.size();
*this & length;
2023-04-17 23:11:16 +02:00
for(auto i = d.begin(); i != d.end(); i++)
save(*i);
}
template <typename T>
void save(const std::list<T> &data)
{
2023-04-17 23:11:16 +02:00
auto & d = const_cast<std::list<T> &>(data);
2024-05-17 18:36:07 +02:00
uint32_t length = d.size();
*this & length;
2023-04-17 23:11:16 +02:00
for(auto i = d.begin(); i != d.end(); i++)
save(*i);
}
void save(const std::string &data)
{
if (hasFeature(Version::COMPACT_STRING_SERIALIZATION))
{
if (data.empty())
{
2024-05-17 18:36:07 +02:00
save(static_cast<uint32_t>(0));
return;
}
auto it = savedStrings.find(data);
if (it == savedStrings.end())
{
2024-05-17 18:36:07 +02:00
save(static_cast<uint32_t>(data.length()));
this->write(static_cast<const void *>(data.data()), data.size());
// -1, -2...
int32_t newStringID = -1 - savedStrings.size();
savedStrings[data] = newStringID;
}
else
{
int32_t index = it->second;
save(index);
}
}
else
{
2024-05-17 18:36:07 +02:00
save(static_cast<uint32_t>(data.length()));
this->write(static_cast<const void *>(data.data()), data.size());
}
}
template <typename T1, typename T2>
void save(const std::pair<T1,T2> &data)
{
save(data.first);
save(data.second);
}
template <typename T1, typename T2>
void save(const std::unordered_map<T1,T2> &data)
{
2024-05-17 18:36:07 +02:00
*this & static_cast<uint32_t>(data.size());
for(auto i = data.begin(); i != data.end(); i++)
{
save(i->first);
save(i->second);
}
}
template <typename T1, typename T2>
void save(const std::map<T1,T2> &data)
{
2024-05-17 18:36:07 +02:00
*this & static_cast<uint32_t>(data.size());
2023-04-17 23:11:16 +02:00
for(auto i = data.begin(); i != data.end(); i++)
{
save(i->first);
save(i->second);
}
}
template <typename T1, typename T2>
void save(const std::multimap<T1, T2> &data)
{
2024-05-17 18:36:07 +02:00
*this & static_cast<uint32_t>(data.size());
2023-04-17 23:11:16 +02:00
for(auto i = data.begin(); i != data.end(); i++)
{
save(i->first);
save(i->second);
}
}
2023-04-16 23:24:11 +02:00
template<typename T0, typename... TN>
void save(const std::variant<T0, TN...> & data)
{
2024-05-17 18:36:07 +02:00
int32_t which = data.index();
save(which);
VariantVisitorSaver<BinarySerializer> visitor(*this);
2023-04-15 03:33:00 +02:00
std::visit(visitor, data);
}
2023-04-16 19:42:56 +02:00
template<typename T>
void save(const std::optional<T> & data)
{
if(data)
{
2024-05-17 18:36:07 +02:00
save(static_cast<uint8_t>(1));
save(*data);
}
else
{
2024-05-17 18:36:07 +02:00
save(static_cast<uint32_t>(0));
}
}
template <typename T>
void save(const boost::multi_array<T, 3> &data)
{
2024-05-17 18:36:07 +02:00
uint32_t length = data.num_elements();
*this & length;
auto shape = data.shape();
2024-05-17 18:36:07 +02:00
uint32_t x = shape[0];
uint32_t y = shape[1];
uint32_t z = shape[2];
*this & x & y & z;
2024-05-17 18:36:07 +02:00
for(uint32_t i = 0; i < length; i++)
save(data.data()[i]);
}
template <std::size_t T>
void save(const std::bitset<T> &data)
{
static_assert(T <= 64);
if constexpr (T <= 16)
{
auto writ = static_cast<uint16_t>(data.to_ulong());
save(writ);
}
else if constexpr (T <= 32)
{
auto writ = static_cast<uint32_t>(data.to_ulong());
save(writ);
}
else if constexpr (T <= 64)
{
auto writ = static_cast<uint64_t>(data.to_ulong());
save(writ);
}
}
};
VCMI_LIB_NAMESPACE_END